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Abstract
In this paper, we will give explicit examples of solutions to the degenerate

complex Monge–Ampère equation and explore some properties of the corre-
sponding metric. Our explicit examples suggest that when the degeneration
of the volume form is of conical type |s|2k, k ∈ R+ for a holomorphic section
of a hermitian line bundle, then the Kähler metric has at most conical sin-
gularities. Moreover, if k ∈ N (hence |s|2k is smooth), then the solution and
therefore the degenerate Kähler metric are both smooth.
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1 Introduction
In Yau’s paper [1], using the continuity method, he solved the Calabi conjecture by
solving the following complex Monge–Ampère equation:

(ω + i∂∂̄φ)n = eFωn, (1)

on a closed Kähler manifold (Mn, ω) with F ∈ C∞(M) such that∫
M
eFωn = vol(M). (2)

Locally, Equation (1) is equivalent to

det(gij̄ + ∂ij̄φ) = eF det gij̄ . (3)

So we can regard this equation as prescribing the volume form of a Kähler metric ω+i∂∂̄φ.
Hence it is related to the canonical bundle of M and the construction of Einstein metric.
In [1], he showed that if F ∈ Ck(M), k ≥ 3, satisfies Equation (2), then there exists
φ ∈ Ck+1,α(M) for any α ∈ [0, 1) such that ω + i∂∂̄φ defines a Kähler metric and φ
satisfies Equation (1). In particular, if F ∈ C∞(M), then φ ∈ C∞(M).

In the same paper, Yau also considered the complex Monge–Ampère equation with
degenerate right-hand side:

(ω + i∂∂̄φ)n = |s|2keFωn, (4)

where s is a section of a holomorphic hermitian line bundle L such that∫
|s|2keFωn = vol(M). (5)

Then from the equation, we can see that on the divisor D = {s = 0}, the metric will
have zero volume and hence it is degenerate here. To deal with this, Yau considered the
following smoothing

(ω + i∂∂̄φ)n = Cε(|s|2 + ε)keFωn, (6)
where ε is a small positive constant and Cε = vol(M)/

∫
(|s|2 + ε)kωn. Then by the non-

degenerate case, we get a solution φε ∈ C∞(M) that satisfies Equation (6). By making
some precise estimates, Yau showed that there exists a converging subsequence of {φε}
as ε→ 0 in the compact set outside the divisor. Then by taking a compact resolution of
M\D, we get a solution φ of Equation (4) that is smooth outside the divisor and |φij̄ |
is bounded over M for all i, j. Additionally, he also proved the uniqueness of any such
solution up to a constant.

After Yau’s result, some work has been done using pluripotential theory, Notably,
Kolodziej had shown that on compact Käler manifold (M,ω),

(ω + i∂∂̄φ)n = Fωn (7)

has a continuous solution if F ∈ L1(M) and
∫
Fωn = vol(M) (Theorem 2.4.2 in [4]).

By the nature of Yau’s method, we cannot know the local behavior of φ near the
divisor, in particular the behavior of the degenerate metric near the divisor, which will
be important for further application. For example, degeneration may occur when we
pull back a Kähler metric via a birational map.

In this paper, we hope to address this problem by providing some explicit examples
and try to deduce a suitable local model from them. The ultimate goal we want to prove
is the following statement suggested by Prof. Chin-Lung Wang:
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For k ∈ N, if F ∈ C∞(M) and D is a smooth divisor, then Equation (4) has
a unique solution φ ∈ C∞(M). Moreover, the degenerate metric ω + i∂∂̄φ
will be a conical metric transverse to the divisor, with k determining its cone
angle.
And in case of k ∈ R>0\N, the solution cannot be smooth if the right hand
side is not smooth. But it also won’t be too bad, we should have φ =
f + |s|2(k+1)g with f, g ∈ C∞(M).

The term conical metric just means that near the divisor the metric is quasi-isometric
to standard cone metric with cone angle 2πβ:

ds2β = dr2 + β2r2dθ2 + ds2R2(n−1)on (R2 − {0})× R2(n−1)

where (r, θ) are polar coordinates in the first R2 and ds2R2(n−1) is standard Euclidean
metric. A canonical example is the pullback of the standard metric on C via

C → C
z 7→ zk.

which looks like
ds2 = d(zk)⊗ d(z̄k) = k2|z|2(k−1)dz ⊗ dz̄.

in polar coordinates is

ds2 = k2r2(k−1)(dx2 + dy2) = k2r2(k−1)(dr2 + r2dθ2) = k2r2(k−1)dr2 + k2r2kdθ2.

Thus if we let ρ = rk, we have dρ = krk−1dr. So

ds2 = dρ2 + k2ρ2dθ2,

which is the standard cone metric with cone angle 2πk.
We first look at the case of one dimension in the next section, we will prove this

conjecture in the smooth case using standard Hodge theory, as Equation (4) will be
reduced to Laplace equation on M . We will also discuss the local behavior of solution
φ near the divisor in some cases. The behavior of degenerate metric can also be read
from the equation. With this we can consider the product of Riemann surfaces, which
will provide many examples for both smooth and normal crossing divisors in higher
dimension.

For higher dimensions in general, we hope to use the continuity method as in [1].
Hence we first have to construct some solution to Equation (4) with certain eF0 . Then
we start to deform the equation to the eF we want, and show that we can also solve the
equation throughout the process.

In this paper, we will construct some explicit examples that satisfy Equation (4) in
(CPn, ωFS) and study their behavior. In Section 3, we mostly consider the case where
s is a section of L = O(1) in CPn, therefore the resulting divisor is a hyperplane. With
suitable metric on O(1), we then show the following.

Proposition 1.1. In (M,ω) = (CPn, ωFS), for all k ∈ N, if we take φk = −
∑k

m=1
1
m |s|2m,

then ω+i∂∂̄φk will define a degenerate metric with vanishing order |s|2k along the divisor.
In other word,

(ω + i∂∂̄φk)
n = |s|2keFkωn, (8)

for some eFk ∈ C∞(M).
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In this example, in local coordinates (z1, z2, . . . , zn) on U0 with s = z1. It happens
that if we write ω = i∂∂̄ϕ, where ϕ is the local potential of Kähler metric ω. Then
ϕ + φk has the form f + |z1|2(k+1)h, with ∂

∂z1
f = ∂

∂z̄1
f = 0. Then we can see that the

first column of the final metric are g′
i1̄

= (ϕ + φk)i1̄ = (|z1|2(k+1)h)i1̄ = |z1|2k(· · · ) for
1 ≤ i ≤ n. Hence we can factor out |z1|2k from the first column, which contributes to the
final degeneration of the metric in the normal direction and on the determinant. This
also shows that the degenerate metric is conical transverse to D. Moreover, we have
ω + i∂∂̄φk|D is another Kähler metric on the divisor, which is coming for i∂∂̄f .

Thus, we propose an ansatz for solution φ such that the volume has degeneracy |s|2k.
When ω = i∂∂̄ϕ, then there should be f with f |D a Käler potential such that ϕ − f ∈
O(|s|2(k+1)).

With this, we can further construct examples with any degree |s|2k, k ∈ R>0. The
idea is to first use the above example to create a higher vanishing order |s|2m for m ∈ N
greater than k. Then take φ = φm + |s|2(k+1)f for suitable f , then φ will create a
vanishing order of |s|2k on the divisor. For example, we have

Proposition 1.2. In (M,ω) = (CPn, ωFS) and D = {Z1 = 0}. For k ∈ N and
0 < r < 1, if we take φ = φk + 1

k+r |s|
2(k+r), where φk = −

∑k
m=0

1
m |s|2m. Then

ω + i∂∂̄φ defines a Kähler metric on M −D that satisfies

(ω + i∂∂̄φ)n = |s|2(k+r−1)eFωn. (9)

Hence we see that the solution φ = φk+
1

k+r |s|
2(k+r) = f+g|s|2(k+r) as we conjectured

for general degree. And again we can factor out |s|k+r−1 from the first column of the
metric, this shows that this is also conical metric as we conjectured.

In Section 4, we consider metric with degeneration on simple normal crossing divisor
consisting of hyperplanes in CPn. We first give an example coming from the pullback
of metric via the map

CPn → CPn

[Z0 : · · · : Zn] 7→ [(Z0)m : · · · : (Zn)m]

where m ∈ N. Then clearly this map is locally just taking m power on each coordinate,
hence the pullback metric will be conical and therefore create degeneration on divisor
{Z0 = 0} ∪ · · · ∪ {Zn = 0}.

Inspired by this example, we give a construction of a metric of Fubini-Study type with
arbitrary vanishing order in the local chart for simple normal crossing divisor. That is,
Locally in coordinates (z1, . . . , zn), if we take

ω = i∂∂̄ log(1 +
n∑

i=1

|zi|2(ri+1)).

Then for any ri 6= −1 ∈ R, this will give a corresponding vanishing order on {zi = 0}.
Then form this, we continue to construct global examples with different vanishing orders
on all but one component.

Proposition 1.3. On M = CPn. For ri ∈ R≥0, 1 ≤ i ≤ n , consider

ω = i∂∂̄ log(|Z0|2m +
n∑

i=1

|Zi|2(ri+1)|Z0|2(m−ri−1) +
n∑

i=1

|Zi|2m),

where m ∈ N is greater than or equal to ri+1 for all 1 ≤ i ≤ n. Then ω is well defined on
the whole CPn and determines a metric outside the divisor {Z0 = 0}∪ (

⋃
ri>0{Zi = 0}),

with vanishing order |zi|2ri on {Zi = 0} for each i ≥ 1.
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Notice that, up to a scaling 1
m , this example lies in the same class as the Fubini-Study

metric. Now using this construction, although we can create any vanishing order ri on
each {Zi = 0} for i 6= 0. The vanishing behavior on {Z0 = 0}, is determined by other
{ri}ni=1. This seems to suggest some obstruction for the existence of a smooth solution
with some given vanishing orders on each components, which means that the resulting
φ will not be smooth, while its volume is. Nevertheless, it might be possible to twist the
construction along the smooth loci of the divisors to eliminate the obstruction.

Although the divisors we consider are mostly hyperplanes in CPn, the local behavior
may still hold in general, as any simple normal crossing divisor are locally hyperplanes.
Thus, in principle, we should be able to glue our local solution near the divisor to a global
one via suitable cutoff functions. In fact, this corresponds to the twisting constructions
expected in the last paragraph. This is the direction we plan to work on in the sequel.
With this done, it will provide a starting point for us to use the continuity method in
the case of general divisor in general Kähler manifold.

Finally, in Section 5 we will set up the continuity method for the degenerate complex
Monge–Ampère equation, and try to work on the openness for degenerate metric. That
is, for φ0 being a solution to

(ω + i∂∂̄φ0)
n = |s|2keF0ωn,

can we find a solution to Equation (4) when F is close to F0? We will see that we have
to solve degenerate Laplace equation and develop Schauder’s estimates associated with
the conical metric. Some observations are presented when φ is the one we constructed
in Section 3, but many progresses still need to be made in the future.

During the preparation of this thesis, I noticed a recent post [2] on arXiv by A. Bahraini
where he claimed to prove that if s is a holomorphic section with simple zeros along a
smooth divisor D. Then

(ω + i∂∂̄φ)n = |s|2eFωn. (10)

has a smooth solution.
In the sequel, based on our new constructions, we hope to generalize his result to the

case with higher vanishing order as well as in the case of normal crossing divisors.

Acknowledgment
This is my 2025 Bachelor’s thesis at National Taiwan University supervised by Professor
Chin-Lung Wang. I would like to thank Professor Wang for suggesting this very interest-
ing problem and sharing with me his many insights on it, including possible geometric
applications in birational geometry [3].

2 Riemann surfaces and their products
2.1 complex Monge–Ampère equation on Riemann surfaces
Using standard Hodge theory, we can fully solve the complex Monge–Ampère equation
in one dimension with arbitrary line bundle and divisor. Since Equation (4) in one
dimension now becomes

ω + i∂∂̄φ = |s|2keFω,

or locally in coordinates z,
gzz̄ + ∂zz̄φ = |s|2keF gzz̄.
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Taking trace on both sides, we get

∆gφ = |s|2keF − 1. (11)

Thus we reduce to solving this Laplace equation on M . And from the condition Equa-
tion (5), we have

∫
M (|s|2keF −1)ω = 0. By Hodge theory, this is the precise requirement

for the Laplace equation to be solvable. Hence we will get a solution φ (which is unique
up to a constant) for Equation (11) and multiplying the equation by gzz̄ shows that φ
indeed solves the complex Monge–Ampère equation in one dimension. And by the reg-
ularity theorem, we have φ ∈ C∞(M) if the right hand side of Equation (11) is smooth
(for example, if F ∈ C∞(M) and k ∈ N).

The local behavior of the degenerate metric is also known, since in one dimension
the determinant is exactly the same as the metric. So from equation ω′ = ω + i∂∂̄φ =
|s|2keFω, we can see that locally in coordinate z such that z = 0 defines the divisor, the
degenerate metric is

|s|2keF gzz̄dz ⊗ dz̄ = |z|2keF ′
dz ⊗ dz̄,

which is a cone metric with cone angle 2π(k + 1). This proves the conjecture in the
one-dimensional case.

For more precise local behavior of φ, we may take chart (U, z) such that locally s = z,
then we have φ satisfying

φzz̄ = |z|2kekheF gzz̄ − gzz̄ = |z|2keF ′ − gzz̄,

where eh is the local metric on L. Now by the ∂∂̄-lemma we can find a local potential
φg ∈ C∞(U) such that (φg)zz̄ = gzz̄. Then φ′ = φ+ φg will satisfy

φ′
zz̄ = |z|2keF ′

, (12)

and we now want to look at the behavior of solution φ′ to this equation.
In the case where k ∈ N and gzz̄, h, e

F are all real analytic, we have eF ′ and hence
φ′ are also real analytic (since we can solve Equation (12) using power series). We can
therefore write φ′ =

∑
i,j≥1 aijz

iz̄j and eF
′
=
∑

i,j≥0 bi,jz
iz̄j , we omit the terms with

pure power of z and z̄ in φ′ as they are harmonic and will not contribute to φ′
zz̄. Then

the equation gives

φ′
zz̄ =

∑
i,j≥1

ijai,jz
i−1z̄j−1 = |z|2k

∑
i,j≥0

bi,jz
iz̄j =

∑
i,j≥0

bi,jz
i+kz̄j+k,

and hence

φ′ =
∑
i,j≥0

bi,j
(i+ k + 1)(j + k + 1)

zi+k+1z̄j+k+1 = |z|2(k+1)
∑
i,j≥0

b′i,jz
iz̄j .

So φ′ = |z|2(k+1)f for some f as we conjectured.
The more important case we want to know is the one where k /∈ N, we hope to

control the behavior of φ′ and therefore φ. Following our conjecture, we may try to
solve φ′ = |z|2(k+1)f for smooth f . Then Equation (12) becomes

|z|2keF ′
= (|z|2(k+1)f)zz̄ = |z|2(k+1)fzz̄ + (k + 1)|z|2k(zfz + z̄fz̄) + (k + 1)2f,

so we have
eF

′
= |z|2fzz̄ + (k + 1)(zfz + z̄fz̄) + (k + 1)2f. (13)
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Now if we assume gzz̄, h, eF are all real analytic like before, then eF
′ is real analytic.

Let f =
∑

i,j≥0 ai,jz
iz̄j , then Equation (13) will give∑

i,j≥0

(i+ k + 1)(j + k + 1)ai,jz
iz̄j = eF

′
.

Since i + k + 1, j + k + 1 > 0 for all i, j ≥ 0, we can solve this equation by comparing
the coefficients on both sides.

In the future, we hope to solve Equation (13) for smooth eF ′ . In general, if we can solve
this for smooth f in a neighborhood of z = 0, then (φ+φg − |z|2(k+1)f)zz̄ = 0. Let ψ ∈
C∞
0 (U) be a cutoff function such that ψ ≡ 1 near 0, then ∆g(φ− |z|2(k+1)fψ) ∈ C∞(M)

and hence φ− |z|2(k+1)fψ ∈ C∞(M) by regularity. So φ is of the form g+ |s|2(k+1)f for
some f, g ∈ C∞(M) as we hoped.

We end this section with a remark on a relation between degenerate complex Monge–
Ampère equation with general right hand side and the Kazdan-Warner equation about
the scalar curvature under conformal change on a Riemann surface.

Remark 2.1. For Riemann surface (X, g) with Gaussian curvature K, then g̃ = e2ug
will have Gaussian curvature K̃ satisfying

∆gu−K + K̃e2u = 0. (14)

And we have the following theorem due to Kazdan and Warner:

Theorem 2.2 ([5]). For X with genus ≥ 2, Equation (14) has a solution u ∈ C∞(X) if
K̃ ≤ 0 and not all 0.

Compare this with the degenerate complex Monge–Ampère equation with general right
hand side in [1]:

(ω + i∂∂̄φ)n = |s|2keF (z,φ)ωn (15)

with ∂tF (x, t) ≥ 0. In one dimension, it reduces to

1 + ∆gφ− |s|2keF (z,φ) = 0,

and a special case of it is:
∆gu+ 1− |s|2keF+2u = 0.

Then these two equations coincide if our initial metric satisfies K ≡ −1 (which we can
get by a conformal change), and we take K̃ = −|s|2keF ≤ 0. So by the above theorem
we will have a smooth solution φ in this case.

2.2 Higher dimensional examples by products
Now, the case of the Riemann surface allows us to create many examples in higher
dimension by taking the product: If {(Xi, ωi)}ni=1 are Riemann surfaces with any metric
ωi on each Xi (which will automatically be Kähler), then we can take (M,ω) as M =
X1 × · · · × Xn with product metric ω. Hence if zi is coordinate on Xi with zi = 0
corresponding to xi ∈ Xi, then z = (z1, . . . , zn) are coordinates on X and we have the
product metric is

gij̄ =

g11̄ . . .
gnn̄

 . (16)
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Now from the above we know that if we pick x1 as a divisor for X1, then for any
|s|2keF ∈ C∞(X1) with x1 = {s = 0}, we can find φ1 ∈ C∞(X1) such that ω1+ i∂∂̄φ1 =
|s|2keFω1. Hence the volume of gij̄ + (φ1)ij̄ will be g′

11̄

∏
i ̸=1 gīi, which is degenerate on

the smooth divisor {x1} ×X2 × · · · ×Xn.
Similarly we can find φi on each Xi such that g′

īi
= gīi + (φi)īi will have degeneration

on xi. Then

g′ij̄ = gij̄ + (
∑
i

φi)ij̄

=

g11̄ + (φ1)11̄
. . .

gnn̄ + (φn)nn̄

 =

g
′
11̄

. . .
g′nn̄


will have volume

∏
i g

′
īi

which is degenerate on simple normal crossing divisor D =⋃
i(
∏

j<iXj × {xi} ×
∏

j>iXj) which locally is just {
∏

i z
i = 0}. This provides many

examples that satisfy the conjecture and obviously generalizes to the case where we
choose the divisor on each Xi to consist of arbitrary many points on each Xi.

3 Examples for smooth divisor in CP n

For general n, we consider the simplest case that Mn = CPn = {[Z0 : Z1 : · · · : Zn]}
with Fubini-Study metric on it. We can take Ui = {Zi 6= 0} = {[Z0

Zi
: · · · : 1 : · · · : Zn

Zi
]} as

charts. Then on U0 with coordinates (z1, . . . , zn) 7→ [1 : z1 : · · · : zn], the Fubini-Study
metric is

ωFS = i∂∂̄ log |Z|2 = i∂∂̄ log(1 +
∑

|zi|2)

= i∂(
zjdz̄

j

1 + |z|2
) = i

δij(1 + |z|2)− z̄izj

(1 + |z|2)2
dzi ∧ dz̄j .

Hence gij̄ =
δij(1+|z|2)−z̄izj

(1+|z|2)2 and det gij̄ =
(

1
1+|z|2

)n+1
.

For the divisor D, we choose the hyperplane {Z1 = 0} ' CPn−1, which is a smooth di-
visor and locally on U0 is just {z1 = 0}. In terms of Cartier divisor, it is {(1, U1), (

Z1

Zi
, Ui)},

which gives gij = fi
fj

= Zj

Zi . This corresponds to the line bundle O(1), since we can look
at the tautological line bundle O(−1). Then for (fi, Ui) a section of O(−1), we get

f0

(
1,
Z1

Z0
, . . . ,

Zn

Z0

)
= f1

(
Z0

Z1
, 1, . . . ,

Zn

Z1

)
.

Hence we get f0 = f1
Z0

Z1 and the transition function is gij = Zi

Zj . Also on O(−1) we have
a natural bundle metric h∗ induced from Cn+1, which on Ui is h∗i =

∑n
j=0 |

Zj

Zi |2. Then
we can take the dual metric h on O(1) which gives hi = 1∑n

j=0 |
Zj

Zi |2
on Ui. Then for the

section s = {(1, U1), (
Z1

Zi
, Ui)} ∈ Γ(O(1)), we have the norm is

|s|2 = h0

∣∣∣∣Z1

Z0

∣∣∣∣2 =
∣∣∣Z1

Z0

∣∣∣2∑n
j=0

∣∣∣Zj

Z0

∣∣∣2 =
|Z1|2∑
j |Zj |2

=
|z1|2

1 + |z|2
.

For the following two sections, we fix (M,ω, s, |s|2) as above, and most calculations will
be made on chart U0 with standard coordinates.
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3.1 Hyperplane with degeneracy |s|2k, k ∈ N

Our main example for this section is:

Proposition 3.1. For all k ∈ N, consider φk = −
∑k

m=1
1
m |s|2m ∈ C∞(M). Then

ω + i∂∂̄φk defines a Kähler metric on M −D which satisfies

(ω + i∂∂̄φk)
n = |s|2keFkωn, (17)

with eFk = (k + 1)(
∑k

m=0 |s|2m)n−1 > 0.

Hence, we will have an example with smooth φ for any vanishing order |s|2k, k ∈ N
on the divisor.

To calculate ω′ = ω + i∂∂̄φk, we first need the following lemma:

Lemma 3.2. On chart U0, we have

(|s|2k)ij̄ = k2|s|2(k−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]
−k|s|2k

[
δij

1 + |z|2
− z̄izj

(1 + |z|2)2

]
.

Proof. From

(|s|2)ij̄ =
(

|z1|2

1 + |z|2

)
ij̄

=

(
δ1iz̄

1

1 + |z|2
− |z1|2z̄i

(1 + |z|2)2

)
j̄

=

(
δ1iδ1j
1 + |z|2

− δ1iz̄
1zj

(1 + |z|2)2
− |z1|2δij + δ1jz

1z̄i

(1 + |z|2)2
+ 2

|z1|2z̄izj

(1 + |z|2)3

)
= − |z1|2δij

(1 + |z|2)2
+

δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+ 2

|z1|2z̄izj

(1 + |z|2)3
,

we have

(|s|2k)ij̄ = (k|s|2(k−1)|s|2i )j̄ = k|s|2(k−1)|s|2ij̄ + k(k − 1)|s|2(k−2)|s|2i |s|2j̄

= −k|s|2(k−1)

[
|z1|2δij

(1 + |z|2)2
− δ1iδ1j

1 + |z|2
+
δ1jz

1z̄i + δ1iz̄
1zj

(1 + |z|2)2
− 2

|z1|2z̄izj

(1 + |z|2)3

]
+ k(k − 1)|s|2(k−2)

(
δ1iz̄

1

1 + |z|2
− |z1|2z̄i

(1 + |z|2)2

)(
δ1jz

1

1 + |z|2
− |z1|2zj

(1 + |z|2)2

)
= −k|s|2(k−1)

[
|z1|2δij

(1 + |z|2)2
− δ1iδ1j

1 + |z|2
+
δ1jz

1z̄i + δ1iz̄
1zj

(1 + |z|2)2
− 2

|z1|2z̄izj

(1 + |z|2)3

]
+ k(k − 1)|s|2(k−2)

[
δ1iδ1j |z1|2

(1 + |z|2)2
− |z1|2δ1jz1z̄i + |z1|2δ1iz̄1zj

(1 + |z|2)3
+

|z1|4z̄izj

(1 + |z|2)4

]
= −k|s|2(k−1)

[
|z1|2δij

(1 + |z|2)2
− δ1iδ1j

1 + |z|2
+
δ1jz

1z̄i + δ1iz̄
1zj

(1 + |z|2)2
− 2

|z1|2z̄izj

(1 + |z|2)3

]
+ k(k − 1)|s|2(k−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]
= k2|s|2(k−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]
− k|s|2(k−1)

[
|z1|2δij

(1 + |z2|)2
− |z1|2z̄izj

(1 + |z|2)3

]
= k2|s|2(k−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]
− k|s|2k

[
δij

1 + |z|2
− z̄izj

(1 + |z|2)2

]
.
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Hence for φk = −
∑k

m=1
1
m |s|2m, we have

(φk)ij̄ = −
k∑

m=1

1

m
(|s|2m)ij̄

= −
k∑

m=1

m|s|2(m−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]

+
k∑

m=1

|s|2m
[

δij
1 + |z|2

− z̄izj

(1 + |z|2)2

]
and therefore

gij̄ + (φk)ij̄ =
δij

1 + |z|2
− z̄izj

(1 + |z|2)2
+ (φk)ij̄

= −
k∑

m=1

m|s|2(m−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]

+
k∑

m=0

|s|2m
[

δij
1 + |z|2

− z̄izj

(1 + |z|2)2

]

= (

k∑
m=0

|s|2m)
δij

1 + |z|2
− (

k∑
m=0

(m+ 1)|s|2m)
z̄izj

(1 + |z|2)2

− (

k∑
m=1

m|s|2(m−1))

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2

]

=


(k+1)|s|2k
1+|z|2 (1− |s|2) − (k+1)|s|2k z̄1

(1+|z|2)2
(
z2 · · · zn

)
− (k+1)|s|2kz1

(1+|z|2)2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)
 .

To find the determinant of this metric, we use the following lemma:

Lemma 3.3.
det(A+ uvT ) = det ·A(1 + vTA−1u)

Proof. For determinant, we have

det(A+ uvt) = detA · det(I +A−1uvt) = detA · (1 + vtA−1u).

Where det(I + uvt) = 1 + vtu is coming from(
I 0
vt 1

)(
I + uvt u

0 1

)(
I 0

−vt 1

)
=

(
I u
0 1 + vtu

)
.

We can now expand with respect to the first column, and get

det(g′) =
(k + 1)|s|2k

1 + |z|2
(1− |s|2) det

∑k
m=0 |s|2m

1 + |z|2
In−1 −

∑k
m=0(m+ 1)|s|2m

(1 + |z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)
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+

n∑
i=2

(−1)i+2 (k + 1)|s|2kz1z̄i

(1 + |z|2)2
det


− (k+1)|s|2k z̄1

(1+|z|2)2
(
z2 · · · zn

)
∑k

m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)


-irow

=
(k + 1)|s|2k

1 + |z|2
(1− |s|2)(

∑k
m=0 |s|2m

1 + |z|2
)n−1(1−

∑k
m=0(m+ 1)|s|2m

(1 + |z|2)
∑k

m=0 |s|2m
(|z|2 − |z1|2))

+

n∑
i=2

(−1)i+2 (k + 1)|s|2kz1z̄i

(1 + |z|2)2
det

− (k+1)|s|2k z̄1
(1+|z|2)2

(
z2 · · · zn

)
∑k

m=0 |s|2m
1+|z|2 In−1


- i row

=
(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−1((1− |s|2)−

(1− |s|2)
∑k

m=0(m+ 1)|s|2m

(1 + |z|2)
∑k

m=0 |s|2m
(|z|2 − |z1|2))

+
n∑

i=2

(−1)i+2 (k + 1)|s|2kz1z̄i

(1 + |z|2)2
(

∑k
m=0 |s|2m

1 + |z|2
)n−2(−1)i+1 (k + 1)|s|2kz̄1zi

(1 + |z|2)2

=
(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−1((1− |s|2)−

∑k
m=0 |s|2m − (k + 1)|s|2(k+1)

(1 + |z|2)
∑k

m=0 |s|2m
(|z|2 − |z1|2))

− (

∑k
m=0 |s|2m

1 + |z|2
)n−2(

(k + 1)|s|2k

(1 + |z|2)2
)2

n∑
i=2

|z1|2|zi|2

=
(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−1

[
1− |s|2 − |z|2 − |z1|2

1 + |z|2
+

(k + 1)|s|2(k+1)(|z|2 − |z1|2)
(1 + |z|2)

∑k
m=0 |s|2m

]

− (k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−2 (k + 1)|s|2k

(1 + |z|2)3
|z1|2(|z|2 − |z1|2)

=
(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−1

[
1− |z|2

1 + |z|2
+

(k + 1)|s|2(k+1)(|z|2 − |z1|2)
(1 + |z|2)

∑k
m=0 |s|2m

]

− (k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−2 (k + 1)|s|2(k+1)

(1 + |z|2)2
(|z|2 − |z1|2)

=
(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)n−2[∑k

m=0 |s|2m

1 + |z|2
(

1

1 + |z|2
+

(k + 1)|s|2(k+1)(|z|2 − |z1|2)
(1 + |z|2)

∑k
m=0 |s|2m

)− (k + 1)|s|2(k+1)

(1 + |z|2)2
(|z|2 − |z1|2)

]

=
(k + 1)|s|2k

(1 + |z|2)3
(

∑k
m=0 |s|2m

1 + |z|2
)n−2[

k∑
m=0

|s|2m + (k + 1)|s|2(k+1)(|z|2 − |z1|2)− (k + 1)|s|2(k+1)(|z|2 − |z1|2)

]

=
(k + 1)|s|2k

(1 + |z|2)3
(

∑k
m=0 |s|2m

1 + |z|2
)n−2

k∑
m=0

|s|2m =
(k + 1)|s|2k

(1 + |z|2)2
(

∑k
m=0 |s|2m

1 + |z|2
)n−1.

Which gives eF = (k + 1)(
∑k

m=0 |s|2m)n−1 > 0 (since det gij̄ = ( 1
1+|z|2 )

n+1).
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For positive definiteness, we can see that the determinant of first ℓ× ℓ block is

(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)ℓ−1

[
1− |s|2 −

∑ℓ
i=2 |zi|2

1 + |z|2
+

(k + 1)|s|2(k+1)(
∑ℓ

i=2 |zi|2)
(1 + |z|2)

∑k
m=0 |s|2m

]

− (k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)ℓ−2 (k + 1)|s|2k

(1 + |z|2)3
|z1|2(

ℓ∑
i=2

|zi|2)

=
(k + 1)|s|2k

1 + |z|2
(

∑k
m=0 |s|2m

1 + |z|2
)ℓ−1

[
1− |s|2 −

∑ℓ
i=2 |zi|2

1 + |z|2

]

=
(k + 1)|s|2k

(1 + |z|2)2
(

∑k
m=0 |s|2m

1 + |z|2
)ℓ−1

[
1 + |z|2 −

ℓ∑
i=1

|zi|2
]
,

which is positive outside the divisor for all ℓ. Hence from linear algebra we know that
g′ = g+∂∂̄φk is positive definite outside the divisor on chart U0. (Similarly for Ui, ∀i 6= 1
by symmetry.)

To check that it only vanishes on the divisor, it remains to look at the chart U1 (mainly
for the point [0 : 1 : 0 : · · · ] that is not cover by ∪i ̸=1Ui). And we can without lost of
generality exchange 0 and 1, then

|s|2 = |Z0|2∑
|Zj |2

=
1

1 + |z|2
,

and

|s|2ij̄ =
(

−z̄i

(1 + |z|2)2

)
j̄

=
−δij

(1 + |z|2)2
+

2z̄izj

(1 + |z|2)3
,

(|s|2k)ij̄ = (k|s|2(k−1)|s|2i )j̄ = k|s|2(k−1)|s|2ij̄ + k(k − 1)|s|2(k−2)|s|2i |s|2j̄

= k|s|2(k−1)[
−δij

(1 + |z|2)2
+

2z̄izj

(1 + |z|2)3
] + k(k − 1)|s|2(k−2) z̄izj

(1 + |z|2)4

= k|s|2k[ −δij
1 + |z|2

+ (k + 1)
z̄izj

(1 + |z|2)
].

Hence

φk = −
k∑

m=1

1

m
|s|2m = −

k∑
m=1

1

m

(
1

1 + |z|2

)2m

and

gij̄ + (φk)ij̄ =
δij

1 + |z|2
− z̄izj

(1 + |z|2)2
+

k∑
m=1

|s|2m[
δij

1 + |z|2
− (m+ 1)

z̄izj

(1 + |z|2)
]

= (
k∑

m=0

|s|2m)
δij

1 + |z|2
− (

k∑
m=0

(m+ 1)|s|2m)
z̄izj

(1 + |z|2)2
.

So the determinant of first ℓ× ℓ block is:(∑k
m=0 |s|2m

1 + |z|2

)ℓ(
1−

∑k
m=0(m+ 1)|s|2m∑k

m=0 |s|2m

∑ℓ
i=1 |zi|2

1 + |z|2

)
.

Now
1−

∑k
m=0(m+ 1)|s|2m∑k

m=0 |s|2m

∑ℓ
i=1 |zi|2

1 + |z|2
≥ 1−

∑k
m=0(m+ 1)|s|2m∑k

m=0 |s|2m
|z|2

1 + |z|2
,
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with

1−
∑k

m=0(m+ 1)|s|2m∑k
m=0 |s|2m

|z|2

1 + |z|2
= 1−

∑k
m=0(m+ 1)|s|2m∑k

m=0 |s|2m
(1− |s|2)

= 1−
∑k

m=0 |s|2m − (k + 1)|s|2(k+1)∑k
m=0 |s|2m

=
(k + 1)|s|2(k+1)∑k

m=0 |s|2m
> 0 (∵ |s|2 > 0).

Hence the determinant is positive for all ℓ and in particular

det(g′ij̄) =

(∑k
m=0 |s|2m

1 + |z|2

)n
(k + 1)|s|2(k+1)∑k

m=0 |s|2m
=

(∑k
m=0 |s|2m

1 + |z|2

)n−1
(k + 1)|s|2k

(1 + |z|2)2
,

which also gives eF = (k + 1)(
∑k

m=0 |s|2m)n−1.

3.1.1 Local behavior along D

On chart U0, since the degenerate metric is

gij̄ + (φk)ij̄ =


(k+1)|s|2k
1+|z|2 (1− |s|2) − (k+1)|s|2k z̄1

(1+|z|2)2
(
z2 · · · zn

)
− (k+1)|s|2kz1

(1+|z|2)2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)
 .

We see that we can factor out |s|2k from the first column, which contributes to the final
|s|2k in the determinant. This also tells us that if we consider ω + i∂∂̄(φk + |s|2(k+1)f),
then since (|s|2(k+1)f)ij̄ will have a factor |s|2k for all i, j, we can still factor out |s|2k

from the first column, and hence the result determinant will still have |s|2k in it, in this
way we can create many possible solutions. (This may increase the order, like if we take
f = − 1

k+1 , then we will get φk+1 and hence |s|2(k+1) on the divisor.)
Also, the factor |s|2k = |z1|2k(· · · ) makes it a cone metric in the normal direction (i.e.

the z1 direction). If we take local coordinate change z1 = w
1

k+1 , then the metric in
(w, z2, . . . , zn) will be

g̃ij̄ =


w

−k
k+1 w̄

−k
k+1

(k+1)2
(k+1)|z1|2k
(1+|z|2)k+1 (1− |s|2) −w

−k
k+1

k+1
(k+1)|z1|2k z̄1
(1+|z|2)k+2

(
z2 · · · zn

)
− w̄

−k
k+1

k+1
(k+1)|z1|2kz1
(1+|z|2)k+2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)


=


1

(k+1)(1+|z|2)k+1 (1− |s|2) − w̄
(1+|z|2)k+2

(
z2 · · · zn

)
− w

(1+|z|2)k+2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)
 ,

with |z1|2 = (|w|2)
1

k+1 and |s|2 = |w|
2

k+1

1+|w|
2

k+1+
∑

i≥2 |zi|2
. We can see that g̃ij̄ is well defined

in a neighborhood of {w = 0} and is nondegenerate here and we may regard g′
ij̄

as the
pullback of g̃ij̄ under the map

(z1, z2, . . .) → (w = (z1)k+1, z2, . . .).
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The factor |s|2k also gives a holomorphic vector field X = ∂z1 near the divisor that
satisfies

〈X,Y 〉g′ = O(|s|2k), ∀|Y |g ≤ 1.

Finally, on the divisor {Z1 = 0} the metric becomes
0 0 · · · 0
0
...
0

1
1+|z|2 In−1 − 1

(1+|z|2)2 z̄
izj

 =

(
0 0
0 ωFS

∣∣
CPn−1

)
.

Hence the restriction of the degenerate metric on the divisor will be another Kähler
metric.

3.1.2 Possible explanation for φk

From above discussion we may guess that the degeneration of determinant will comes
from the first column. Hence we look at the term φ11̄ on chart U0, then from Lemma 3.2
we get

(|s|2k)11̄ = k2|s|2(k−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]
− k|s|2k

[
δij

1 + |z|2
− z̄izj

(1 + |z|2)2

]
= k2|s|2(k−1)

[
1

1 + |z|2
− 2|z1|2

(1 + |z|2)2
+

|z1|4

(1 + |z|2)3

]
− k|s|2k

[
1

1 + |z|2
− |z1|2

(1 + |z|2)2

]
=
k|s|2(k−1)

1 + |z|2
[
k − (2k + 1)|s|2 + (k + 1)|s|4

]
.

And since

log(1 + |z|2)11̄ =
(

z1

1 + |z|2

)
1

=
1

1 + |z|2
− |z1|2

(1 + |z|2)2
=

1

1 + |z|2
(1− |s|2),

if we assume φk =
∑k

m=1 am|s|2m, then

g11̄ + (φk)11̄ =
1

1 + |z|2
(1− |s|2) +

∑
am

|s|2(m−1)

1 + |z|2
[m2 −m(2m+ 1)|s|2 +m(m+ 1)|s|4]

=
1

1 + |z|2
(1− |s|2 +

∑
amm

2|s|2(m−1) −
∑

amm(2m+ 1)|s|2m +
∑

amm(m+ 1)|s|2(m+1))

=
1

1 + |z|2

(
1 + a1 + [−1 + 4a2 − 3a1]|s|2

+
∑
m≥2

[am+1(m+ 1)2 − amm(2m+ 1) + am−1(m− 1)m]|s|2m
)
.

So for φ11̄ to have order |s|2k at the divisor, we need a1 = −1, a2 = −1
2 and am = − 1

m
for m ≤ k, which is what we define φk to be.
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More precisely, if we let |w|2 =
∑

i>1 |zi|2, then the potential for the Fubini-Study
metric is

log(1 + |z1|2 + |w|2) = log(1 + |w|2) + log(1 +
|z1|2

1 + |w|2
)

= log(1 + |w|2)− (− |z1|2

1 + |w|2
+

1

2
(
−|z1|2

1 + |w|2
)2 + · · · ),

where we use log(1− x) = −
∑

m≥1
1
mx

m. And we have

|s|2 = |z1|2

1 + |z1|2 + |w|2
=

|z1|2

1 + |w|2
· 1

1 + |z1|2
1+|w|2

=
|z1|2

1 + |w|2
(1− |z1|2

1 + |w|2
+ (

−|z1|2

1 + |w|2
)2 + · · · ),

so

log(1 + |z|2 + |w|2)− |s|2 = log(1 + |w|2) + 1

2
(

|z1|2

1 + |w|2
)2 + · · ·

= log(1 + |w|2) + |z1|2(· · · )

and

log(1 + |z1|2 + |w|2)−
k∑

m=1

1

m
|s|2m = log(1 + |w|2) + |z1|2(k+1)(· · · ).

With |w|2 being independent of z1, g′
1j̄

will naturally have vanishing order |z1|2k for all
j. We can also see that the term log(1 + |w|2) is the one that contributes to the restrict
metric on the divisor.

Thus we conjecture that under suitable coordinates (z, w) ∈ C×Cn−1 such that locally
the divisor is just {z = 0}, the local model for the potential of degenerate metric with
vanishing order |z|2k is of the form

φ = f + |z|2(k+1)g,

where ∂zf = ∂z̄f = 0. However this local model is quite fragile, as it will not be preserved
under general coordinate change, even if we fix z. For example in CP 2, under coordinate
change (w1, w2) = (z1, z2 + z1), the potential for will become

log(1 + |z2|2) + |z1|2(· · · ) = log(1 + |w2 − w1|2) + |w1|2(· · · ).

So for further application, we either need to find suitable coordinates for the local
model or need to describe it in a more coordinate-free way in the future.

As a final remark, since the construction in 3.1 works for all k ∈ N, it is interesting to
see what will happen if we let k approach infinity. As k → ∞, we get

φ∞ = −
∞∑

m=1

1

m
(|s|2)m = log(1− |s|2),

which is well defined when |s|2 < 1, so ω + i∂∂̄φ∞ is well defined on CPn\{p} with
p = [0 : 1 : · · · ]. Then this should give a vanishing order of ∞. In practice, we see that
on U0,

ω + i∂∂̄φ∞ = i∂∂̄ log(1 + |z|2) + i∂∂̄ log(1− |z1|2

1 + |z|2
) = i∂∂̄ log(1 + |z|2 − |z1|2).
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With 1 + |z|2 − |z1|2 = 1 +
∑

i≥2 |zi|2 not depending on z1, the metric gij̄ will vanish
if i or j is 1. And in the remaining direction, it becomes the Fubini-Study metric for
(z2, . . . , zn). It looks like we collapse the whole CPn\{p} into the divisor.

For the behavior near p, we exchange 0 and 1 like before. Then on chart U0, p is just
the origin, and we have

ω + i∂∂̄φ∞ = i∂∂̄ log(
∑
i>0

|Zi|2) = i∂∂̄ log(|z|2).

Also from 3.1, the volume for ω + i∂∂̄φk is |s|2keFkωn, with

|s|2keFk = |s|2k(k + 1)(

k∑
m=0

|s|2m)n−1 = (k + 1)|s|2k(1− |s|2(k+1)

1− |s|2
)n−1.

Thus if we let fk = |s|2keFk ∈ C∞(CPn), then we have
∫
(fk − 1)ωn = 0 for all k ∈ N

and

fk(z) →

{
0 if z 6= 0

∞ if z = 0.

So the volume will concentrate at the point p as k → ∞.

3.2 Hyperplane with degeneracy |s|2k, k ∈ R>0

We now give a example with vanishing order |s|2k for all k ∈ R>0, our main result for
this section is:

Proposition 3.4. For k ∈ N and 0 ≤ r < 1, if we take φ = φk + 1
k+r |s|

2(k+r), where
φk = −

∑k
m=0

1
m |s|2m as in Section 3. Then ω+ i∂∂̄φ defines a Kähler metric on M−D

that satisfies
(ω + i∂∂̄φ)n = |s|2(k+r−1)eFωn, (18)

with

eF =

(
k∑

m=0

|s|2m − |s|2(k+r)

)n−1

[(k + 1)|s|2(1−r) + (k + r)− (k + r + 1)|s|2].

The discussion in Section 3.1.2 suggests that to get degree k+r with k ∈ Z≥0, 0 < r < 1,
we should consider φk+1 + C0|s|2(k+r+1), then g11̄ + φ11̄ = |s|2(k+1)(...) + |s|2(k+r)(...) =
|s|2(k+r)(...) will have vanishing order |s|2(k+r).

For ease of notation and computation, we may take φ = φk+C0|s|2(k+r) and C0 =
1

k+r .
Then from Lemma 3.2, the metric will be

gij̄ + φij̄ =


(k+1)|s|2k
1+|z|2 (1− |s|2) − (k+1)|s|2k z̄1

(1+|z|2)2
(
z2 · · · zn

)
− (k+1)|s|2kz1

(1+|z|2)2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)


+ C0(k + r)2|s|2(k+r−1)

[
δ1iδ1j
1 + |z|2

− δ1jz
1z̄i + δ1iz̄

1zj

(1 + |z|2)2
+

|z1|2z̄izj

(1 + |z|2)3

]
− C0(k + r)|s|2(k+r)

[
δij

1 + |z|2
− z̄izj

(1 + |z|2)2

]
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=


(k+1)|s|2k
1+|z|2 (1− |s|2) − (k+1)|s|2k z̄1

(1+|z|2)2
(
z2 · · · zn

)
− (k+1)|s|2kz1

(1+|z|2)2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m
1+|z|2 In−1 −

∑k
m=0(m+1)|s|2m

(1+|z|2)2

z̄
2

...
z̄n

(z2 · · · zn
)


+ C0


(|s|2(k+r))11̄

|s|2(k+r−1)

(1+|z|2)2 [(k + r)2(−1 + |s|2) + (k + r)|s|2]z̄1
(
z2 · · · zn

)
... − (k+r)|s|2(k+r)

1+|z|2 In−1 +
|s|2(k+r)

(1+|z|2)2 [(k + r)2 + (k + r)]

z̄
2

...
z̄n

(z2 · · · zn
)


=


A Bz̄1

(
z2 · · · zn

)
Bz1

z̄
2

...
z̄n

 CIn−1 + E

z̄
2

...
z̄n

(z2 · · · zn
)


with

A =
(k + 1)|s|2k

1 + |z|2
(1− |s|2) + |s|2(k+r−1)

1 + |z|2
(1− |s|2)[(k + r)− (k + r + 1)|s|2]

=
1− |s|2

1 + |z|2
[(k + 1)|s|2k + (k + r)|s|2(k+r−1) − (k + r + 1)|s|2(k+r)] ≥ 0,

B = −(k + 1)|s|2k

(1 + |z|2)2
+

|s|2(k+r−1)

(1 + |z|2)2
[(k + r)(−1 + |s|2) + |s|2]

= −(k + 1)|s|2k

(1 + |z|2)2
− |s|2(k+r−1)

(1 + |z|2)2
[(k + r)− (k + r + 1)|s|2]

= − A

(1− |s|2)(1 + |z|2)
,

C =

∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2
> 0 (∵ |s|2 < 1),

E =
(k + r + 1)|s|2(k+r) −

∑k
m=0(m+ 1)|s|2m

(1 + |z|2)2
.

So we can factor out |s|2(k+r−1) from the first column like before, and the determinant
of first ℓ× ℓ block is

det = ACℓ−1(1 +
E

C
(

ℓ∑
i=2

|zi|2))−
ℓ∑

i=2

B2Cℓ−2|z1|2|zi|2

= Cℓ−2[A(C + E

ℓ∑
i=2

|zi|2)− |z1|2B2
ℓ∑

i=2

|zi|2]

= Cℓ−2A

[
C + E

ℓ∑
i=2

|zi|2 − A

(1− |s|2)2(1 + |z|2)
|s|2

ℓ∑
i=2

|zi|2
]

=
Cℓ−2

1 + |z|2
A

1− |s|2[
(1− |s|2)(

k∑
m=0

|s|2m − |s|2(k+r)) + (1− |s|2)
(k + r + 1)|s|2(k+r) −

∑k
m=0(m+ 1)|s|2m

1 + |z|2
ℓ∑

i=2

|zi|2
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−

(
(k + 1)|s|2k

1 + |z|2
+

|s|2(k+r−1)

1 + |z|2
[(k + r)− (k + r + 1)|s|2]

)
|s|2

ℓ∑
i=2

|zi|2
]

=
Cℓ−2

1 + |z|2
A

1− |s|2[
(1− |s|2)(

k∑
m=0

|s|2m − |s|2(k+r))

+
(1− |s|2)(k + r + 1)|s|2(k+r) −

∑k
m=0 |s|2m + (k + 1)|s|2(k+1)

1 + |z|2
ℓ∑

i=2

|zi|2

−

(
(k + 1)|s|2(k+!)

1 + |z|2
+

|s|2(k+r)

1 + |z|2
[(k + r)− (k + r + 1)|s|2]

)
ℓ∑

i=2

|zi|2
]

=
Cℓ−2

1 + |z|2
A

1− |s|2[
(1− |s|2)(

k∑
m=0

|s|2m − |s|2(k+r)) +
(1− |s|2)(k + r + 1)|s|2(k+r) −

∑k
m=0 |s|2m

1 + |z|2
ℓ∑

i=2

|zi|2

− |s|2(k+r)

1 + |z|2
[(k + r)− (k + r + 1)|s|2]

ℓ∑
i=2

|zi|2
]

=
Cℓ−2

1 + |z|2
A

1− |s|2[
(1− |s|2)(

k∑
m=0

|s|2m − |s|2(k+r)) +
|s|2(k+r) −

∑k
m=0 |s|2m

1 + |z|2
ℓ∑

i=2

|zi|2
]

=
Cℓ−1

1 + |z|2
A

1− |s|2

[
(1− |s|2)(1 + |z|2)−

ℓ∑
i=2

|zi|2
]
=

Cℓ−1

1 + |z|2
A

1− |s|2

[
1 + |z|2 −

ℓ∑
i=1

|zi|2
]
.

In particular,

det(gij̄ + φij̄) =
Cn−1

1 + |z|2
A

1− |s|2

[
1 + |z|2 −

n∑
i=1

|zi|2
]
=

Cn−1

1 + |z|2
A

1− |s|2

= Cn−1 1

(1 + |z|2)2
[(k + 1)|s|2k + |s|2(k+r−1)((k + r)− (k + r + 1)|s|2)]

= |s|2(k+r−1)Cn−1 1

(1 + |z|2)2
[(k + 1)|s|2(1−r) + (k + r)− (k + r + 1)|s|2],

with (k + 1)|s|2(1−r) + (k + r) − (k + r + 1)|s|2 > 0 since |s|2 ≤ |s|2(1−r) < 1. Hence
this gives a metric outside the divisor with vanishing order |s|2(k+r−1) on the divisor on
chart U0, with behavior like cone metric associated to |s|2(k+r−1).

Similarly we have to check on chart U1, and we exchange 0 and 1 as before. Then

φ = −
k∑

m=1

1

m
|s|2m +

1

k + r
|s|2(k+r)

= −
k∑

m=1

1

m

(
1

1 + |z|2

)2m

+
1

k + r

(
1

1 + |z|2

)2(k+r)

.
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As before we have

(|s|2k)ij̄ = k|s|2k[ −δij
1 + |z|2

+ (k + 1)
z̄izj

(1 + |z|2)2
],

therefore we get

gij̄ + φij̄ =
δij

1 + |z|2
− z̄izj

(1 + |z|2)2
+

k∑
m=1

|s|2m[
δij

1 + |z|2
− (m+ 1)

z̄izj

(1 + |z|2)
]

+ |s|2(k+r)[
−δij

1 + |z|2
+ (k + r + 1)

z̄izj

(1 + |z|2)
]

= (

k∑
m=0

|s|2m − |s|2(k+r))
δij

1 + |z|2

− (

k∑
m=0

(m+ 1)|s|2m − (k + r + 1)|s|2(k+r))
z̄izj

(1 + |z|2)2
.

And using Lemma 3.3,

det =

(∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2

)n(
1−

∑k
m=0(m+ 1)|s|2m − (k + r + 1)|s|2(k+r)∑k

m=0 |s|2m − |s|2(k+r)

|z|2

1 + |z|2

)

=

(∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2

)n(
1−

∑k
m=0(m+ 1)|s|2m − (k + r + 1)|s|2(k+r)∑k

m=0 |s|2m − |s|2(k+r)
(1− |s|2)

)

=

(∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2

)n(
1−

∑k
m=0 |s|2m − (k + 1)|s|2(k+1) − (k + r + 1)|s|2(k+r)(1− |s|2)∑k

m=0 |s|2m − |s|2(k+r)

)

=

(∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2

)n−1
−|s|2(k+r) + (k + 1)|s|2(k+1) + (k + r + 1)|s|2(k+r)(1− |s|2)

1 + |z|2

=

(∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2

)n−1
(k + r)|s|2(k+r) + (k + 1)|s|2(k+1) − (k + r + 1)|s|2(k+r+1)

1 + |z|2
> 0.

The determinant of first ℓ × ℓ block can also be easily seen to be positive as the last
factor should be bigger.

In this example we can see that φ = −
∑k

m=1
1
m |s|2m + 1

k+r |s|
2(k+r) gives determinant

|s|2(k+r−1)

(1 + |z|2)2

(∑k
m=0 |s|2m − |s|2(k+r)

1 + |z|2

)n−1

[(k + 1)|s|2(1−r) + (k + r)− (k + r + 1)|s|2],

hence we may expect that the solution φ for |s|2k, k ∈ R will look like φ = f + |s|2kg,
where f, g are smooth function. (In other words, the solution φ is not too bad.)

3.3 Other smooth divisors
Some examples with different smooth divisors are also calculated using the computer.
We simply present the result and will not do the full calculation:
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In CP 2, we pick L = O(2), s = (Z0)2 + (Z1)2 + (Z2)2 and D = {s = 0} is smooth.
Then on chart U0, |s|2 = |1+(z1)2+(z2)2|2

(1+|z|2)2 . Now consider φ = −1
4 |s|

2, then on U0 (hence
on any Ui by symmetry):

det(ω + i∂∂̄φ) =
3

4
|s|2 (|s|2 + 2)

(1 + |z|2)3

And if we add − 3
32 |s|

4, − 5
96 |s|

6 after φ, we will get a vanishing order of |s|4 and |s|6.
However, if we pick L = O(2), s = (Z0)2+(Z1)2+(Z2)2+Z0Z1+Z0Z2+Z1Z2. Then

it seems that there is no constant C ∈ R such that ω +C · i∂∂̄|s|2 will have a vanishing
order of |s|2.

4 Examples for Normal crossing divisors
In this section, we consider the simple normal crossing divisor consisting of hyperplanes
in CPn.

4.1 Normal crossing degeneracy from pullback
A first suggestive example for normal crossing divisor comes from the pullback of the
metric on CPn. For all m ≥ 2, if we consider the map

CPn j→ CPn

[Z0 : Z1 : · · · : Zn] 7→ [(Z0)m : (Z1)m : · · · : (Zn)m],

then since the tangent map is not surjective on the normal crossing divisor {Z0 =
0} ∪ · · · ∪ {Zn = 0}, the pullback of Fubini-Study metric via j will be singular on it.

More precisely, the pullback of a Kähler metric satisfies j∗ω = j∗i∂∂̄φ = i∂∂̄(φ ◦ j),
where φ is a local potential of ω. Hence on chart U0 = {Z0 6= 0} with coordinates
(z1, . . . , zn),

g′ij̄ = (j∗gFS)ij̄ = ∂i∂̄j log(1 +
∑
i

|zi|2m) = ∂i

(
m|zj |2(m−1)zj

1 +
∑

|zi|2m

)

=
δijm

2|zi|2(m−1)

1 +
∑

|zi|2m
− m2|zi|2(m−1)|zj |2(m−1)z̄izj

(1 +
∑

|zi|2m)2
,

and the determinant is

det g′ij̄ = det

(
δijm

2|zi|2(m−1)

1 +
∑

|zi|2m

)(
1− 1

1 +
∑

|zi|2m
∑

|zi|2m
)

=
m2n

∏
i |zi|2(m−1)

(1 +
∑

|zi|2m)n+1
,

which will have same vanishing order |zi|2(m−1) on each divisor {Zi = 0}. And this
corresponds to the case where L = O(1)⊗(m−1)(n+1) with induced hermitian metric from
O(1) and s =

∏n
i=0(si)

m−1 ∈ Γ(L) where si ∈ Γ(O(1)) is the section that has vanishing
order 1 on divisor {Zi = 0}

Now, since ω = i∂∂̄ log
∑

|Zi|2 and j∗ω = i∂∂̄ log
∑

|Zi|2m, for the difference of
potential to be globally defined, we need it to be homogeneous. In other words, consider

ω − 1

m
j∗ω = i∂∂̄(log

∑
|Zi|2 − 1

m
log
∑

|Zi|2m) = i∂∂̄ log

∑
|Zi|2

(
∑

|Zi|2m)
1
m

,

then the difference will be φ = − log
∑

|Zi|2

(
∑

|Zi|2m)
1
m

∈ C∞(M).
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Remark 4.1 (Local behavior of degenerate metric). The pullback metric on U0 looks
like

g′ij̄ =


m2|z1|2(m−1)(1+

∑
|zi|2m−|z1|2m)

(1+
∑

|zi|2m)2
−m2|z1|2(m−1)|z2|2(m−1)z̄1z2

(1+
∑

|zi|2m)2
· · · −m2|z1|2(m−1)|zn|2(m−1)z̄1zn

(1+
∑

|zi|2m)2

−m2|z1|2(m−1)|z2|2(m−1)z1z̄2

(1+
∑

|zi|2m)2
m2|z2|2(m−1)(1+

∑
|zi|2m−|z2|2m)

(1+
∑

|zi|2m)2

... . . .
−m2|z1|2(m−1)|zn|2(m−1)z1z̄n

(1+
∑

|zi|2m)2
m2|zn|2(m−1)(1+

∑
|zi|2m−|zn|2m)

(1+
∑

|zi|2m)2

 .

Like before, we can factor out |zi|2(m−1) from each column, which contributes to the
final degeneration of the determinant.

And from the above example, we may guess that the behavior of metric with degener-
ation

∏n
i=1 |zi|2ri will be:

|z1|2r1 |z1|2r1 · |z2|2r2 |z1|2r1 · |z3|2r3 · · ·
|z1|2r1 · |z2|2r2 |z2|2r2 |z2|2r2 · |z3|2r3 · · ·
|z1|2r1 · |z3|2r3 |z2|2r2 · |z3|2r3 |z3|2r3 · · ·

...

 (19)

under suitable local coordinates such that {
∏
(zi)ri = 0} defines the divisor.

4.2 Local construction with normal crossing degeneracy
Following the above example, we continue to consider the metric of Fubini-Study type.
For more general normal crossing divisor that has different order on each part, we may
take locally in coordinates (z1, . . . , zn)

ω = i∂∂̄ log(1 +

n∑
i=1

|zi|2(ri+1)),

with ri 6= −1 ∈ R being the vanishing order we want on {zi = 0}.
Then

gij̄ = log(1 +
n∑

i=1

|zi|2(ri+1))ij̄ =

(
(ri + 1)|zi|2ri z̄i

1 +
∑n

i=1 |zi|2(ri+1)

)
j̄

=
(ri + 1)2|zi|2ri

1 +
∑n

i=1 |zi|2(ri+1)
δij −

(ri + 1)(rj + 1)|zi|2ri |zj |2rj z̄izj

(1 +
∑n

i=1 |zi|2(ri+1))2

and

det gij̄ =

∏n
i=1(ri + 1)2|zi|2ri

(1 +
∑n

i=1 |zi|2(ri+1))n
(1−

∑n
i=1 |zi|2(ri+1)

1 +
∑n

i=1 |zi|2(ri+1)
)

=

∏n
i=1(ri + 1)2|zi|2ri

(1 +
∑n

i=1 |zi|2(ri+1))n+1
,

which has vanishing order
∏

|zi|2ri as we hope.
For positive definiteness, we can see that the determinant of first ℓ× ℓ square is∏ℓ
i=1(ri + 1)2|zi|2ri

(1 +
∑n

i=1 |zi|2(ri+1))ℓ
(1−

∑ℓ
i=1 |zi|2(ri+1)

1 +
∑n

i=1 |zi|2(ri+1)
) =

(
ℓ∏

i=1

(ri + 1)2|zi|2ri
)

1 +
∑n

i=ℓ+1 |zi|2ri+1

(1 +
∑n

i=1 |zi|2(ri+1))ℓ+1
≥ 0.
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So the metric is positive definite outside the divisor.
If we let G = 1 +

∑n
i=1 |zi|2(ri+1), then

gij̄ = (logG)ij̄ =
Gij̄

G
−
GiGj̄

G2

=
(ri + 1)2|zi|2ri

1 +
∑n

i=1 |zi|2(ri+1)
δij −

(ri + 1)(rj + 1)|zi|2ri |zj |2rj z̄izj

(1 +
∑n

i=1 |zi|2(ri+1))2

=

|zi|2ri (ri+1)2(1+
∑

j ̸=i |zj |
2(rj+1))

(1+
∑n

i=1 |zi|2(ri+1))2
i = j

−|zi|2ri |zj |2rj (ri+1)(rj+1)z̄izj

(1+
∑n

i=1 |zi|2(ri+1))2
i 6= j

=


|z1|2r1 (r1+1)2(G−|z1|2(r1+1))

G2 −|z1|2r1 |z2|2r2 (r1+1)(r2+1)z̄1z2

G2 · · ·
−|z2|2r2 |z1|2r1 (r2+1)(r1+1)z̄2z1

G2 |z2|2r2 (r2+1)2(G−|z2|2(r2+1))
G2 · · ·

...
...


as guessed in Equation (19).

From this we also see that the degenerate metric is still a metric when restricted to
the smooth part of the divisor.

Remark 4.2. We also have a simpler local construction by considering

(
n∑

i=1

|zi|2(ri+1))ij̄ = δij(ri + 1)2|zi|ri .

This gives a similar degeneration, and can be globalized to normal crossing divisor in
(CP 1)n.

4.3 Globalization
With a little tweaking, we can make the above example defined globally. Our main result
for this section is:

Proposition 4.3. For ri ∈ R>0, 1 ≤ i ≤ n , consider

ω = i∂∂̄ log(|Z0|2m +

n∑
i=1

|Zi|2(ri+1)|Z0|2(m−ri−1) +

n∑
i=1

|Zi|2m),

where m ∈ N is greater than or equal to ri+1 for all 1 ≤ i ≤ n. Then ω is well defined on
whole CPn and determines a metric outside of the divisor {Z0 = 0} ∪ (

⋃
ri>0{Zi = 0}),

with vanishing order |zi|2ri on {Zi = 0} for each i ≥ 1. However, although we can create
any vanishing order ri on each {Zi = 0} for i 6= 0. The vanishing behavior on {Z0 = 0},
is determined by other {ri}ni=1 in this construction.

And the difference of

ωFS − 1

m
ω = i∂∂̄ log

∑n
i=0 |Zi|2

(|Z0|2m +
∑n

i=1 |Zi|2(ri+1)|Z0|2(m−ri−1) +
∑n

i=1 |Zi|2m)
1
m

= i∂∂̄φ

gives a globally defined potential φ.

For
ω = i∂∂̄ log(|Z0|2m +

n∑
i=1

|Zi|2(ri+1)|Z0|2(m−ri−1) +

n∑
i=1

|Zi|2m),
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on chart U0,

gij̄ = log(1 +
n∑

i=1

|zi|2(ri+1) +
n∑

i=1

|zi|2m)ij̄

=

(
(ri + 1)|zi|2ri z̄i +m|zi|2(m−1)z̄i

1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m

)
j̄

=
(ri + 1)2|zi|2ri +m2|zi|2(m−1)

1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m
δij −

((ri + 1)|zi|2ri +m|zi|2(m−1)) ∗ (j part)
(1 +

∑n
i=1 |zi|2(ri+1) +

∑n
i=1 |zi|2m)2

z̄izj .

Then using lemma 3.3

det gij̄ =

∏n
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)n(
1−

n∑
i=1

|zi|2

1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m
((ri + 1)|zi|2ri +m|zi|2(m−1))2

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

∏n
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)n+1(
1 +

n∑
i=1

|zi|2(ri+1) +
n∑

i=1

|zi|2m −
n∑

i=1

|zi|2 ((ri + 1)|zi|2ri +m|zi|2(m−1))2

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

∏n
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)n+1(
1 +

n∑
i=1

|zi|2(ri+1) + |zi|2m − |zi|2 (ri + 1)2(|zi|2ri)2 +m2(|zi|2(m−1))2 + 2(ri + 1)m|zi|2(m+ri+1)

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

∏n
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)n+1(
1 +

n∑
i=1

|zi|2m
2|zi|2(m+ri+1) + (ri + 1)2|zi|2(m+ri−1) − 2(ri + 1)m|zi|2(m+ri+1)

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

∏n
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)n+1

(
1 +

n∑
i=1

|zi|2 (m− ri − 1)2|zi|2(m+ri+1)

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

n∏
i=1

|zi|2ri
∏n

i=1(ri + 1)2 +m2|zi|2(m−ri−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)n+1

(
1 +

n∑
i=1

|zi|2 (m− ri − 1)2|zi|2(m+ri+1)

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)
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For the positive definiteness, the determinant of the first ℓ× ℓ block is∏ℓ
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)ℓ(
1−

ℓ∑
i=1

|zi|2

1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m
((ri + 1)|zi|2ri +m|zi|2(m−1))2

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

∏ℓ
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)ℓ+1(
1 +

n∑
i=1

|zi|2(ri+1) +

n∑
i=1

|zi|2m −
ℓ∑

i=1

|zi|2 ((ri + 1)|zi|2ri +m|zi|2(m−1))2

(ri + 1)2|zi|2ri +m2|zi|2(m−1)

)

=

∏ℓ
i=1(ri + 1)2|zi|2ri +m2|zi|2(m−1)

(1 +
∑n

i=1 |zi|2(ri+1) +
∑n

i=1 |zi|2m)ℓ+1(
1 +

ℓ∑
i=1

|zi|2 (m− ri − 1)2|zi|2(m+ri+1)

(ri + 1)2|zi|2ri +m2|zi|2(m−1)
+

n∑
i=ℓ+1

|zi|2(ri+1) + |zi|2m
)
,

which is positive outside the divisor.

Remark 4.4. Although we can assign any degree on the divisor {Zi = 0} for 1 ≤
i ≤ n. This will certainly create some order on the divisor {Z0 = 0} (which should be
|z0|mini 2(m−ri−2)). We hope to fully calculate this in the future.

5 A Proposal on the openness of degenerate complex
Monge–Ampère equations

With the above examples as a starting point, we can start to set up the continuity
method. For reference, we first review how it is done in [1].

To solve the complex Monge–Ampère equation

(ω + i∂∂̄φ)n = eFωn (20)

we deform it through the following equation

(ω + i∂∂̄φ)n = Cte
tFωn, t ∈ [0, 1].

where Ct = vol(M)/
∫
etFωn is constant for each t which makes Equation (2) hold.

Then we consider the set

S = {t ∈ [0, 1]| the equation (ω + i∂∂̄φ)n = Cte
tFωn has solution φ ∈ Ck+1,α(M)}.

We have 0 ∈ S, since at t = 0 the equation is just

(ω + i∂∂̄φ)n = ωn,

hence φ = 0 is a solution. If we can show that S is both open and closed, then since
[0, 1] is connected, we must have S = [0, 1]. In particular, 1 ∈ S, so Equation (20) must
have a solution in Ck+1,α(M).

For the openness, we use the inverse function theorem for Banach space. Let

Θ = {φ ∈ Ck+1,α(M)|(gij̄ + φij̄) > 0,

∫
φ = 0},
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B = {f ∈ Ck−1,α(M)|
∫
fωn = vol(M)}.

Then Θ is an open set in Banach space Ck+1,α(M) (since eigenvalues will have lower
bound), and B is an affine plane in Ck−1,α(M). We have a map G : Θ → B

G(φ) =
det(gij̄ + ∂2

ij̄
φ)

det gij̄
.

With differential at φ is

dG(δφ) = δG(φ) =
δ det(gij̄ + ∂2

ij̄
φ)

det gij̄
=

det(gij̄ + ∂2
ij̄
φ)

det gij̄
∆gφ(δφ).

Hence, since the tangent space of B is {f ∈ Ck−1,α(M)|
∫
fωn = 0}. And for

dG(δφ) =
det(gij̄ + ∂2

ij̄
φ)

det gij̄
∆gφ(δφ) = f

to have weak solution, we have ∆gφ(δφ) det(gij̄+φij̄) = f det gij̄ , so
∫
fωn =

∫
∆gφ(δφ)(ω+

i∂∂̄φ)n = 0, which is precisely the requirement for tangent space of B. Thus we have a
weak solution φ, and by usual Schauder’s estimates, φ ∈ Ck+1,α(M). φ is also unique
if we require

∫
φ = 0, thus the differential is invertible and we can apply the inverse

function theorem for Banach space. This shows that if we have a solution to Equa-
tion (20), then for a small change on the right-hand side, the equation is still solvable.
In particular, this proves the openness for S.

We won’t talk about closeness here, instead we will try to work on the openness for
degenerate metric. In the degenerate case, for any |s|2k, it is not clear why there should
be a smooth solution to any Equation (4). This is why we have to construct some
examples and hope to work on the general existence in the future. With these examples
as a starting point, we can try to prove the openness near these metric. This part has
been treated in [2], in the case of |s|2 with simple zeros on the smooth divisor. We hope
to deal with general smooth divisors with any order |s|2k based on our constructions.

As in the nondegenerate case, we consider the same G : Cℓ+1,α(M) → B. We now
look at the map near the ω′ = ω+ i∂∂̄φ we constructed in Section 3, which is degenerate
on the divisor. Then the differential dG at φ will be

dG(δφ) = δ
det(g + φ)

det g
=

Aij̄

det g
(δφ)ij̄ =

det g′

det g
∆g′(δφ), (21)

where Aij̄ is the (i, j)-cofactor of (gij̄ + φij̄). And because the metric is degenerate on
the divisor, ∆g′ is only well defined outside the divisor.

So for the invertiblilty of dG at φ, we have to solve the degenerate Laplace equation
associated to conical metric

det g′∆g′(δφ) = f det g.

for any f ∈ Cℓ−1,α(M) that satisfies
∫
fωn = 0. As treated in [2], We hope to use

the result of [6] about Hodge theory in Riemannian manifold with non isolated conical
singularity, but this requires some further investigation.

Suppose that we can solve the degenerate Laplace equation; then we have to show that
the solution belongs to Cℓ+1,α(M). For this, we need to develop Schauder’s estimates
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associated with the conical metric. Since the metric is nondegenerate outside the divisor,
we only have to check the regularity on the divisor.

Now we investigate the case where φ is the one we constructed, then we can find
coordinates near the divisor such the metric is of the form as in ??, i.e.

g′ij̄ =


|z1|2r1 |z1|2r1 · |z2|2r2 |z1|2r1 · |z3|2r3 · · ·

|z1|2r1 · |z2|2r2 |z2|2r2 |z2|2r2 · |z3|2r3 · · ·
|z1|2r1 · |z3|2r3 |z2|2r2 · |z3|2r3 |z3|2r3 · · ·

...

 .

For simplicity we only consider the smooth divisor first, that is

g′ij̄ =

|s|2k |s|2k · · ·
|s|2k ∗ · · ·

...
... . . .

 .

Then we can observe that Aij̄ will have a factor of |s|2k unless i = j = 1. So for
∆g′(δφ) = g′ij̄(δφ)ij̄ = Aij̄

|s|2keF det g
(δφ)ij̄ , we can see that only the term g′11̄ will have a

1
|z1|2k in it, the remaining g′ij̄ will be smooth.

Another possible way to get the regularity is based on the observation that g′
ij̄

is the
pullback of g̃ij̄ under the map

(z1, z2, . . .) → (w = (z1)k+1, z2, . . .).

Where

g̃ij̄ =


1

(k+1)(1+|w|
2

k+1+|z′|2)k+1
(1− |s|2) − w̄

(1+|w|
2

k+1+|z′|2)k+2

(
z2 · · · zn

)
− w

(1+|w|
2

k+1+|z′|2)k+2

z̄
2

...
z̄n

 ∑k
m=0 |s|2m

1+|w|
2

k+1+|z′|2
In−1 −

∑k
m=0(m+1)|s|2m

(1+|w|
2

k+1+|z′|2)2

z̄
2

...
z̄n

(z2 · · · zn
)
 ,

with |z′|2 =
∑

i≥2 |zi|2 and |s|2 = |w|
2

k+1

1+|w|
2

k+1+|z′|2
. It is well defined and nondegenerate in a

neighborhood of {w = 0}, so it is likely that we may use the usual Schauder’s estimates.
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