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Abstract

In this paper, we will give explicit examples of solutions to the degenerate
complex Monge-Ampére equation and explore some properties of the corre-
sponding metric. Our explicit examples suggest that when the degeneration
of the volume form is of conical type |s|?*, k € R* for a holomorphic section
of a hermitian line bundle, then the Kéahler metric has at most conical sin-
gularities. Moreover, if & € N (hence |s|?* is smooth), then the solution and
therefore the degenerate Kéhler metric are both smooth.
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1 Introduction

In Yau’s paper [1], using the continuity method, he solved the Calabi conjecture by
solving the following complex Monge-Ampere equation:

(w + 100p)"™ = ef'w™, (1)

on a closed Kéhler manifold (M"™,w) with F' € C*°(M) such that

/ ef'w™ = vol(M). (2)
M
Locally, Equation (1) is equivalent to

det(g;; + O0;5) = el det 9gij- (3)

So we can regard this equation as prescribing the volume form of a Kéhler metric w-+id0p.
Hence it is related to the canonical bundle of M and the construction of Einstein metric.
In [1], he showed that if F € C¥(M),k > 3, satisfies Equation (2), then there exists
@ € C*La(M) for any o € [0,1) such that w + i0dp defines a Kéhler metric and ¢
satisfies Equation (1). In particular, if F' € C°°(M), then ¢ € C*°(M).

In the same paper, Yau also considered the complex Monge-Ampére equation with
degenerate right-hand side:

(w +i00p)™ = |8|2ker”, (4)

where s is a section of a holomorphic hermitian line bundle L such that

/\S\leFw" = vol(M). (5)

Then from the equation, we can see that on the divisor D = {s = 0}, the metric will
have zero volume and hence it is degenerate here. To deal with this, Yau considered the

following smoothing B
(w +i00p)™ = C.(|s])? + )Fel W™, (6)

where ¢ is a small positive constant and C. = vol(M)/ [(|s|*> +)*w™. Then by the non-
degenerate case, we get a solution ¢, € C°°(M) that satisfies Equation (6). By making
some precise estimates, Yau showed that there exists a converging subsequence of {p.}
as € — 0 in the compact set outside the divisor. Then by taking a compact resolution of
M\D, we get a solution ¢ of Equation (4) that is smooth outside the divisor and [p;;]
is bounded over M for all i, j. Additionally, he also proved the uniqueness of any such
solution up to a constant.

After Yau’s result, some work has been done using pluripotential theory, Notably,
Kolodziej had shown that on compact Kéler manifold (M,w),

(w+i00p)" = Fuw" (7)

has a continuous solution if F € L'(M) and [ Fw™ = vol(M) (Theorem 2.4.2 in [4]).

By the nature of Yau’s method, we cannot know the local behavior of ¢ near the
divisor, in particular the behavior of the degenerate metric near the divisor, which will
be important for further application. For example, degeneration may occur when we
pull back a Kéhler metric via a birational map.

In this paper, we hope to address this problem by providing some explicit examples
and try to deduce a suitable local model from them. The ultimate goal we want to prove
is the following statement suggested by Prof. Chin-Lung Wang;:



For k € N, if F' € C°°(M) and D is a smooth divisor, then Equation (4) has
a unique solution ¢ € C*°(M). Moreover, the degenerate metric w + 190y
will be a conical metric transverse to the divisor, with k determining its cone
angle.

And in case of k € R5(\N, the solution cannot be smooth if the right hand
side is not smooth. But it also won’t be too bad, we should have ¢ =
f+ s g with f,g € C>(M).

The term conical metric just means that near the divisor the metric is quasi-isometric
to standard cone metric with cone angle 274:

ds% = dr® + (*r?do? + dsIQRQ(n_l)on (R% — {0}) x R2(»=1)
where (r,0) are polar coordinates in the first R? and dsig(n,l) is standard Euclidean
metric. A canonical example is the pullback of the standard metric on C via

C —- C
k

z = ZR.
which looks like
ds? = d(2*) ® d(zF) = k?|2)?*Vdz @ dz.

in polar coordinates is
ds? = K220 (dz? 4 dy?) = k220D (dr? + 12d0?) = k220D ar? 4 k2r2Rag?,
Thus if we let p = 7, we have dp = kr*~1dr. So
ds® = dp® + k*p*db?,

which is the standard cone metric with cone angle 27k.

We first look at the case of one dimension in the next section, we will prove this
conjecture in the smooth case using standard Hodge theory, as Equation (4) will be
reduced to Laplace equation on M. We will also discuss the local behavior of solution
 near the divisor in some cases. The behavior of degenerate metric can also be read
from the equation. With this we can consider the product of Riemann surfaces, which
will provide many examples for both smooth and normal crossing divisors in higher
dimension.

For higher dimensions in general, we hope to use the continuity method as in [1].
Hence we first have to construct some solution to Equation (4) with certain ef®. Then
we start to deform the equation to the ef” we want, and show that we can also solve the
equation throughout the process.

In this paper, we will construct some explicit examples that satisfy Equation (4) in
(CP",wpg) and study their behavior. In Section 3, we mostly consider the case where
s is a section of L = O(1) in CP"™, therefore the resulting divisor is a hyperplane. With
suitable metric on O(1), we then show the following.

Proposition 1.1. In (M,w) = (CP",wrs), for allk € N, if we take o, = — S2F _ L|s|2™,

— m=1 m
then w+i00py, will define a degenerate metric with vanishing order |s|** along the divisor.
In other word,

(w +i00py)" = |s[*Felhwm, (8)

for some efv € C>°(M).



In this example, in local coordinates (z!,22,...,2") on Uy with s = z!. It happens

that if we write w = i00¢, where ¢ is the local potential of Kihler metric w. Then
¢ + o has the form f + 212tV h, with %f = %f = 0. Then we can see that the
first column of the final metric are gi; = (¢ + ¢r);1 = (|2 2*+DR) g = [21%(---) for
1 < i < n. Hence we can factor out |z |?* from the first column, which contributes to the
final degeneration of the metric in the normal direction and on the determinant. This
also shows that the degenerate metric is conical transverse to D. Moreover, we have
w + i00py|p is another Kihler metric on the divisor, which is coming for i90f.

Thus, we propose an ansatz for solution ¢ such that the volume has degeneracy |s
When w = idd¢, then there should be f with f|p a Kéler potential such that ¢ — f €
O(|5|2<k+1)).

With this, we can further construct examples with any degree \3\2’“ ,k € Ryg. The
idea is to first use the above example to create a higher vanishing order |s|*™ for m € N
greater than k. Then take ¢ = v, + \S\Q(kﬂ)f for suitable f, then ¢ will create a
vanishing order of |s|?* on the divisor. For example, we have

|2k:‘

Proposition 1.2. In (M,w) = (CP",wrs) and D = {Z' = 0}. For k € N and

0 <7 <1, if we take o = ¢ + g=|s**7), where ¢ = — >k o Lls|*™. Then
w4 i00¢ defines a Kihler metric on M — D that satisfies
(w + i88p)" = |s|2FFr=DelFn, (9)

Hence we see that the solution ¢ = @) + k%ﬂn|s|2(k+7") = f+4g|s|?**+") as we conjectured
for general degree. And again we can factor out |s|/**"~1 from the first column of the
metric, this shows that this is also conical metric as we conjectured.

In Section 4, we consider metric with degeneration on simple normal crossing divisor
consisting of hyperplanes in CP". We first give an example coming from the pullback
of metric via the map

cpr — cpr
[ZO R AL [(Zo)m s (ZM™)

where m € N. Then clearly this map is locally just taking m power on each coordinate,
hence the pullback metric will be conical and therefore create degeneration on divisor
{Z°=0}uU---Uu{Z" =0}.

Inspired by this example, we give a construction of a metric of Fubini-Study type with
arbitrary vanishing order in the local chart for simple normal crossing divisor. That is,
Locally in coordinates (z!,...,z"), if we take

n
w = i001og(1 + Z |22t )y,
i=1
Then for any 7; # —1 € R, this will give a corresponding vanishing order on {z* = 0}.
Then form this, we continue to construct global examples with different vanishing orders
on all but one component.

Proposition 1.3. On M = CP". Forr; € R, 1 <i <n, consider

n n
w=i00 10g(|ZO‘2m + Z |Zi|2(T¢+1)|ZO‘2(m*Ti*1) + Z |Zz|2m)7
i=1 i=1
where m € N is greater than or equal to r;+1 for all1 < i <n. Then w is well defined on
the whole CP™ and determines a metric outside the divisor {Z° = 0}U (U,.i5{Z" = 0}),
with vanishing order |2*|*" on {Z' = 0} for each i > 1.



Notice that, up to a scaling %, this example lies in the same class as the Fubini-Study
metric. Now using this construction, although we can create any vanishing order r; on
each {Z% = 0} for i # 0. The vanishing behavior on {Z" = 0}, is determined by other
{ri}7_,. This seems to suggest some obstruction for the existence of a smooth solution
with some given vanishing orders on each components, which means that the resulting
i will not be smooth, while its volume is. Nevertheless, it might be possible to twist the
construction along the smooth loci of the divisors to eliminate the obstruction.

Although the divisors we consider are mostly hyperplanes in CP", the local behavior
may still hold in general, as any simple normal crossing divisor are locally hyperplanes.
Thus, in principle, we should be able to glue our local solution near the divisor to a global
one via suitable cutoff functions. In fact, this corresponds to the twisting constructions
expected in the last paragraph. This is the direction we plan to work on in the sequel.
With this done, it will provide a starting point for us to use the continuity method in
the case of general divisor in general Kéhler manifold.

Finally, in Section 5 we will set up the continuity method for the degenerate complex
Monge—-Ampére equation, and try to work on the openness for degenerate metric. That
is, for ¢y being a solution to

(w + 100po)"™ = |s|* efowm,

can we find a solution to Equation (4) when F' is close to Fy? We will see that we have
to solve degenerate Laplace equation and develop Schauder’s estimates associated with
the conical metric. Some observations are presented when ¢ is the one we constructed
in Section 3, but many progresses still need to be made in the future.

During the preparation of this thesis, I noticed a recent post [2] on arXiv by A. Bahraini
where he claimed to prove that if s is a holomorphic section with simple zeros along a
smooth divisor D. Then

(w4 i10dp)™ = |s|2ef W™ (10)

has a smooth solution.
In the sequel, based on our new constructions, we hope to generalize his result to the
case with higher vanishing order as well as in the case of normal crossing divisors.
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2 Riemann surfaces and their products

2.1 complex Monge—Ampeére equation on Riemann surfaces

Using standard Hodge theory, we can fully solve the complex Monge—Ampeére equation
in one dimension with arbitrary line bundle and divisor. Since Equation (4) in one

dimension now becomes
w +i100p = |s|**efw,

or locally in coordinates z,
|S|2k6F

G9zz + 822@ = 9zz-



Taking trace on both sides, we get
Ayp = |s*Fel — 1. (11)

Thus we reduce to solving this Laplace equation on M. And from the condition Equa-
tion (5), we have fM(|s|2keF —1)w = 0. By Hodge theory, this is the precise requirement
for the Laplace equation to be solvable. Hence we will get a solution ¢ (which is unique
up to a constant) for Equation (11) and multiplying the equation by g,z shows that ¢
indeed solves the complex Monge-Ampeére equation in one dimension. And by the reg-
ularity theorem, we have ¢ € C°°(M) if the right hand side of Equation (11) is smooth
(for example, if F' € C*°(M) and k € N).

The local behavior of the degenerate metric is also known, since in one dimension
the determinant is exactly the same as the metric. So from equation w’ = w + i00p =
|s|?*eF'w, we can see that locally in coordinate z such that z = 0 defines the divisor, the
degenerate metric is

|s|?*el g.2dz @ dz = |2|**e" dz ® dz,

which is a cone metric with cone angle 27(k + 1). This proves the conjecture in the
one-dimensional case.

For more precise local behavior of ¢, we may take chart (U, z) such that locally s = z,
then we have ¢ satisfying

kh F

Pz = ‘Z‘Zke € Gzz — Jzz = |Z’2keF/

— 92z,
where e” is the local metric on L. Now by the d9-lemma we can find a local potential
g € C®(U) such that (¢g).z = gz.z. Then ¢’ = ¢ + ¢, will satisfy

/zE = ’Z‘leF/7 (12)

and we now want to look at the behavior of solution ¢’ to this equation.

In the case where k € N and ¢.z, h, e are all real analytic, we have e/ and hence
¢ are also real analytic (since we can solve Equation (12) using power series). We can
therefore write ¢’ = 37, .-, ;27 and ef" = > >0 b j2'z), we omit the terms with
pure power of z and Z in ¢ as they are harmonic and will not contribute to ¢’;. Then
the equation gives

! . . i—1-7—1 __ 2k i1=] __ i+k=j+k
W= ijai 2 AT = 2P Y b e = b e AT,
i1 07>0 $,7>0

Fl

and hence

by - , , .

I __ 1,] i+k+1oj+k+1 _ 2(k+1) /i)

o= E , - z z = |z| E b ;2" 2.
G kDR 70

So ¢’ = | 2|2+ f for some f as we conjectured.

The more important case we want to know is the one where k& ¢ N, we hope to
control the behavior of ¢’ and therefore . Following our conjecture, we may try to
solve ¢’ = | 2|2+ f for smooth f. Then Equation (12) becomes

22kef” = (|2PFH0 1) = 2P0 £ (k4 0)|2R (2. + 2f2) + (k + 1),

so we have

e = 2P fos + (k+ 1)(2fs + 2f5) + (k+ 1)%f. (13)



Now if we assume g.z, h, el are all real analytic like before, then e’ /

Let f = Zij>0 ai7jzi2j, then Equation (13) will give

is real analytic.

itk + 1) +k+1)ai 25 = e
i.5>0

Since i +k+ 1,5+ k+ 1> 0 for all 4,5 > 0, we can solve this equation by comparing
the coefficients on both sides.

In the future, we hope to solve Equation (13) for smooth e’ ', In general, if we can solve
this for smooth f in a neighborhood of z = 0, then (¢ + ¢, — [2[?*+D £),; = 0. Let ¢ €
CS°(U) be a cutoff function such that ¢ = 1 near 0, then A, (¢ —|2[2*+D f1h) € C(M)
and hence ¢ — |z|2++1) f1) € C°°(M) by regularity. So ¢ is of the form g + |s|***t1 f for
some f,g € C°°(M) as we hoped.

We end this section with a remark on a relation between degenerate complex Monge—
Ampere equation with general right hand side and the Kazdan-Warner equation about
the scalar curvature under conformal change on a Riemann surface.

Remark 2.1. For Riemann surface (X, g) with Gaussian curvature K, then j = e%*‘g
will have Gaussian curvature K satisfying

Agu— K + Ke* =0, (14)
And we have the following theorem due to Kazdan and Warner:

Theorem 2.2 ([5]). For X with genus > 2, Equation (14) has a solution u € C*°(X) if
K <0 and not all 0.

Compare this with the degenerate complex Monge—Ampere equation with general right
hand side in [1]: )
(w + i88p)" = |52l @) ym (15)

with O, F(z,t) > 0. In one dimension, it reduces to

1+ Ay — |s|#ef ) =0,
and a special case of it is:

Agu+1—|sPefT2u = 0,

Then these two equations coincide if our initial metric satisfies K = —1 (which we can
get by a conformal change), and we take K = —|s|?*¢!” < 0. So by the above theorem
we will have a smooth solution ¢ in this case.

2.2 Higher dimensional examples by products

Now, the case of the Riemann surface allows us to create many examples in higher
dimension by taking the product: If {(X;,w;)}!" ; are Riemann surfaces with any metric
w; on each X; (which will automatically be Kéhler), then we can take (M,w) as M =

X1 x --- x X, with product metric w. Hence if z? is coordinate on X; with 2 = 0
corresponding to z; € X;, then z = (z!,..., 2") are coordinates on X and we have the
product metric is
911
9i5 = . (16)

Inn



Now from the above we know that if we pick z; as a divisor for X;, then for any
|s|?kef” € C°°(X1) with 21 = {s = 0}, we can find ¢; € C°°(X1) such that w; +i09p; =
|s[**¢Fw;. Hence the volume of g;5 + (¢1);; will be gi; [ 141 953> which is degenerate on
the smooth divisor {z;} x X x -+ x X,,.

Similarly we can find ¢; on each X; such that gi = g;; + (:);7 will have degeneration
on z;. Then

95 = 955 + (Z ©i)ij
i

g11 + (p1)11 9

Gna + (©n)na Inn

will have volume [], ggg which is degenerate on simple normal crossing divisor D =
Ui (IT;<; X5 x {zi} x [[;~; X;) which locally is just {[], 2" = 0}. This provides many
examples that satisfy the conjecture and obviously generalizes to the case where we
choose the divisor on each X; to consist of arbitrary many points on each Xj;.

3 Examples for smooth divisor in CP"

For general n, we consider the simplest case that M™ = CP" = {[Z° : Z1 : ... : Z"]}
with Fubini-Study metric on it. We can take U; = {Z" # 0} = {[g—? RS R %]} as
charts. Then on Uy with coordinates (z!,...,2") = [1: 2} : ... : 2", the Fubini-Study
metric is

wpg =i00log|Z|* = iddlog(1+ Y _ |zi[?)

. O (L4 27 =22
=10( ) =1 TEERE dz' NdZ.

Zjdzj
1+ |22

i (14|2|2) =529 n+1
Hence g;; = % and det g;; = (ﬁ) .

For the divisor D, we choose the hyperplane {Z! = 0} ~ CP"~!, which is a smooth di-
visor and locally on Uy is just {z! = 0}. In terms of Cartier divisor, it is {(1, U;), (%, U},
which gives g;; = % = % This corresponds to the line bundle O(1), since we can look
at the tautological line bundle O(—1). Then for (f;,U;) a section of O(—1), we get

A AL Z0 AL
fO 17%)"'1% :fl ﬁ?lv"'vﬁ .

Hence we get fo = flg—? and the transition function is g;; = % Also on O(—1) we have
a natural bundle metric A* induced from C"*1, which on U; is h} = >0 %F Then

we can take the dual metric h on O(1) which gives h; = W on U;. Then for the
i=olZ7

section s = {(1,Uy), (%, Ui)} € T(O(1)), we have the norm is

112

70
S Zi
j=0 |20

For the following two sections, we fix (M, w, s, |s|?) as above, and most calculations will
be made on chart Uy with standard coordinates.

Z1 2

Z0

B |Z1|2 _ |Z1|2
2OX51ZIE 0 1+

|s|” = ho




3.1 Hyperplane with degeneracy |s|* k € N
Our main example for this section is:

Proposition 3.1. For all k € N, consider pp = —Zm L =]s|*™ € C>°(M). Then
w + 100y} defines a Kdhler metric on M — D which satisfies

(w + 100" = |s|Felrwm, (17)
with e = (k+1)(32F _y [s]*™)»~1 > 0.

Hence, we will have an example with smooth ¢ for any vanishing order |s|?*, k € N
on the divisor. B
To calculate W’ = w + 100y, we first need the following lemma:

Lemma 3.2. On chart Uy, we have

(| |2k> o k2| ’2(k71) (511'(51]‘ B (51j212i + (511'2124 ‘Zl|22izj B ’ ’2k 5ij _ zi2d
1+ 2|2 (1+[2[%)? (1+[2[%)3 L+ 22 (14]2?)?
Proof. From
e () - (8 Py
CNEREC) M Ve R Ry
_ < S0 0uz'2 2P 4 6yt |21 127i 27 )
L+ [z2 (T+]2%)? (1+[2[?)? (1+[2[2)?
_ |Zl‘252‘j 51@'51]' B 513,2121' + (Sliflzj |Zl‘25i2’j
(L4222 142 (1+ [22)? (1+ 22
we have
(1s%);7 = (RIsP®V]s2)7 = klsPE D [s[% + k(% — 1)]s?F2)]s[7]s)?
_ —k’s‘ﬂkil) ’Z ‘2(52] B 511513 (51j2 1z +(51i512’j B |Zl|25i2’j
L+ 1222 1412 (1+[2[%)? (1+]2[%)3
PP G L A O N
L+ 22 (1+]2%)2) \14]2> (1+][?)?
—k’S‘Q(kil) [ |Zl|25ij B (512‘(51j 51],21?’_’_5”212]' B |Zl|22izj 1
LA+ 2[2)2 1+ 22 (1+122) (1+122)2)
e e [ O R )
(1+12]?)2 (1+122)? (141224
_ st [ 2P0 dudy | Gyl s (2R
L1+ [22)% 1+ |22 (1+[2[*)? (1+[27)3 ]
_ 01014 02 2+ 81212 |12zt 20
T k(k=1 82(k’ 1) vl J +
N A AP O R (A P
o k2| |2(k71) (51,‘51]‘ B 51j212i + (51i212j ‘Zl|22i2’j
1+ [z (1+[]2) (1+1[22)°
_k’8’2(k71) |Zl‘26ij _ |Zl|2222]
(L+[22))2 (1+[2*)?
_ k2| |2(k_1) |: 511'61]' B (51j215i+(51i212j |zl|22izj :| —/{3| |2k |: 5ij . 7'
1+ [z (1+[2[?)? (1+12]2)? L+ 22 (14 ][2[?)?

O



Hence for ¢, = — S°F s|>™ we have

m=1m
US|
(@k)ﬁ = - Z E(|S’2m)i§
m=1
k . _ . . .
_ Z m|8|2(m_1) [ 511‘51]' _ (51jzlzZ -+ 51@'le] n ’21‘22223
1+ |22 (1+12[%)2 (1+1[2[*)3
2m ij Zizj
’ Z o |t~ )
and therefore
0ij Ziyd
= + — _|_ =
9ij ((pk) 1 + ‘Z|2 (1 + |Z|2)2 (ka)z]
_ Z m|s]2(m*1) (511‘(51]‘ B (51jz12i + 511'21Zj |Zl|22izj
1+ |22 (L4 [2[?)? (14 [2[2)3
2m ij i
y Z o |~ )
2m 1] . 2m zizj
1)] o~
Z )~ Qn tn D)
m=0
k 5 Lz 51,
— (> mls]Pmh) [ 61151]2 i +52M§ Z]}
— 1+ |2] (1+[2[?)
(k+1)]s \2’“ 2 (k+D)|s|?k 2t (2
S (1) ~ e (2 2")
52 52
(k+1)|s**2 | . an=o|8|2m1— Sk _om41)s?m [ .
T (1+]2P)? : 14z nml T (1+]2[%)2 :
En En

To find the determinant of this metric, we use the following lemma:

Lemma 3.3.
det(A + uv?) = det-A(1 + vT A7 )

Proof. For determinant, we have

det(A +uv') = det A - det(I + A uv’) = det A - (1 + 0" A7 ).

Where det(I + uv!) = 1+ vtu is coming from

I 0 I+uvt u r o\ [I U
ot 1 0 1) \=ot 1) \0 1+4+0tu

We can now expand with respect to the first column, and get

82k
dot(g') — Ll

14 |2)?

k k
(1 . ’8’2) det Zm:O 8‘2m 1 Zmzo(m + 1)’8’2m
L+]z 7" (1+[2%)?



(k+1)[s 2! n
—r (& 2

- o (k4 1)|s|?k21 2 Z2
—i—Z(—l)H_Q 53 det k k
Zm: |S|2m o +1 2m . n
P (14 12]?) W[ﬂ_l_% c (2 )
z" -1r
2k k 2m k m
- (’“111,)"2' (- ysr2><zf=0|‘j‘2 poi(n - Zmeom A DI )
z + |2 (L4 2[2) Yoz [SP™
k+1)|s|2k 2t
Sl (R )
(L+ [P Zaspl
Z - i row
2k 2m
— (k1+ 1)|52| (Zm:O‘SL )nfl((l _ ’3‘2) _ (1 — |S|2)Z (m+ 1)‘8‘2m(’ ‘2 ‘2’1’2))
+ 2] 1+ || (1+]2[2) kg Is]™
_|_Z z+2 k+1 ’S’2kzlzl(z 70| |2m)n 2( 1)i+1(k+ )| ’2k
(1+[2[?)? 1+ 2|2 (1+ 12\2)2
_ <k+1>|s|2’“<2m YL YT i U e e VI i PR
Tr i () ) - e (e = )
=0
anzo‘S‘Zm e, (B DS o< 12002
_( 1+|Z|2 ) ((1+|Z|2)2)Z|Z’|Z|
i=2
_ G 1|>||sz|2k(2m 0||s||22m)n_1 [1 RN e o GO G| il | el )
+ 12 L+1e 1422 (L+]212) kg |s)2m
m=0
B (k'+1)’3‘2k(zm o’SPm)n o (k +1)]s[* 212122 = |22
T4 22 ° 1+ 1+ |22 =1
_ (k1+ 1’)|‘82|2k(2m 0‘|S’|22m)n—1 [1_ |2 n (k +1)]sPEHD (22 = |21%)
+ |z 1+ |z 1+ |22 (1+,z\)2 |s|2m
m=0
— (k+ 1)’5‘2k(2fn:0 ’8’2m)n—2 (k+ 1)|5|2(k+1)(| ’2 1,12
ESFERA Fa P (e D
IYCERAIER o I
1+ |z[? 1+ [z[?
k
Zm:O 8|22m( 1 (k+ 1)| |2(k+1 (|Z’2 B |Z1|2)) . (k+ 1)|S|2(k+1)(’2|2 - |Zl|2)
L+ 22 "1+ [z (1+|2[2) 2k o |s)2m (1+[2]?)?
— (k+1)|s|2k(zm O‘S‘Qm)an
(14 |2)?)3 1+ |22
k
> IsPP™ (k4 1)]s IQ(“I)(IZQ—Izll2)—(k+1)|8|2('“+1)(|2|2—!Z1|2)]
m=0
— (k+1)|s|2k(2m:0‘5‘2 n—2 Z‘ ‘2m — k+1)|8|2k(2fn:0‘5‘2m)n71
(14 |2)?)3 1+ |22 (14 |2]?)2 1+ |22 '
Which gives e = (k + 1)(Zm olsI*™)"~1 > 0 (since det g;; = (HTZ‘Q)”“).
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For positive definiteness, we can see that the determinant of first £ x £ block is

(k 4+ DIsl* Somo I5P™ o1 [y 2 - Zizal#' | (e DIsPED (0L, |#11)
Lfal? 2 T4l L+ |2l (14 [21) o s2™

k 14
_ (k+1)|s|2k(2m:0 S|2m)£ 2(k+1)|5’ k| 1’2(Z|zi|2)
T+[z2 1+ 2 (1+[2?)? P
k 14 i
_ (k+ 1)’5’%(2771:0 |5|2m)£—1 1— s - Do 7'
1+ 22 1+ 2|2 1+ |z|?
k ¢
_ (k+1)|s|2k(2m:0|8’2m)€—1 1—|—|Z’2—Z|Zi’2
(FSERRANFaFE 211

which is positive outside the divisor for all £. Hence from linear algebra we know that
g = g+00yy is positive definite outside the divisor on chart Up. (Similarly for U;, Vi # 1
by symmetry.)

To check that it only vanishes on the divisor, it remains to look at the chart U; (mainly

for the point [0 : 1 :0: ---] that is not cover by U;21U;). And we can without lost of
generality exchange 0 and 1, then

’ ’2_ ’ZO|2 _ 1
EZIEE T
and
9 —7 _5ij 27427
|s|5; = ne ). na T 2)3°
J L+ 122 /5 @+[2[*)?  (Q+][*)
(Is1%%)i5 = (k|s|**D]s[2); = k|s|**~ 1)ISIQ + k(k — )IS\Q(k*Q)IS!?IS@
—0; 2zt5d Zizd
—k 2(k—1) ij + L k(k—1 2(k=2)_ ~~
ST R e F R e
iy vy i
= ks [0 + (k+ 1) ———].
Hence i i
1, o 1 1\
== 3k == 3 ()
and
5z'j Zizd F 2m ij 1 Ziyd
gij+(90k)ij*1_’_|2’2 TENED) 2+leH —(m+ )m]

k
2m l] 2m ZZJ
(m+1)|s
ZH 1+ 22 Z )ls| (

~ TR

So the determinant of first ¢ x ¢ block is:

k £ k ¢ ;
> meo 87" 1_ S omeo(m + s> 30 [2°
1+ 22 SF ]s|2m 1+ 22 )

m=0
Now
 Cmo(m A DIsPTE FP | Yhalm e DIsP|2f?
Sk olslm THP T Sk olsPm 142

11



with
k k
CShpm Dl s A (s

2
ShoolsPPm 1P PO EIL L=k
L ZoolsPP = (k4 D[P
Yoo ls2™
(k‘—|— 1)‘5|2(k+1)

_ .. 2

Hence the determinant is positive for all £ and in particular

k m\ " k m n—1
dot(gl) — (= b\ G ISR (5 o 52\ (1)l
& 1+ [z Y omo 52 1+ |z (1+22)2"

which also gives ef” = (k + 1)(252:0 |s[2myn—1L,

3.1.1 Local behavior along D

On chart Uy, since the degenerate metric is

(k+1)|s|? (k+1)|s|2*2" / 9
e (= I %) T RN
2 22
95+ (PG = [ enperat || kool Shogmanisee || o .
ezl B B e Bl B CRRRARNED)
zn zn

We see that we can factor out |s|?* from the first column, which contributes to the final

|s|?* in the determinant. This also tells us that if we consider w + 190 (y, + |s|2F+1 f),

then since (|s|2(k+1)f)i5 will have a factor |s|?* for all i,, we can still factor out |s|?*
from the first column, and hence the result determinant will still have |s|?* in it, in this
way we can create many possible solutions. (This may increase the order, like if we take

f= k+1’ then we will get 41 and hence |s|2#+1) on the divisor.)

Also, the factor |s|?* = |2!|?#(---) makes it a cone metric in the normal direction (i.e.

1
the z! direction). If we take local coordinate change z! = w®, then the metric in
(w,2%,...,2") will be

= k 1|2k = 1|2k 51
wkHL @ k+T (k+1)]z!] ( | | ) _wkL (k+1)[2[*Z (22 Z”)
(T (L R (1422
G = L z z2
i _ @B (kD] PRt DAL S R 52V LIS N
N E DL I L+ n~l (L1
z" zZ"
S S S W (2 ... n
G (L 1sl) w2 ")
z2 z?
=l - w : Smeolo p  Tealmb DB ) (2 )
(P2 | - L[t (1+]=P)? :
z" zZ"

2
|w| k+1

Lo FT 437 |52
in a neighborhood of {w = 0} and is nondegenerate here and we may regard gl’.j as the
pullback of g;; under the map

1
with |2!|2 = (Jw|?)"1 and |s|> = . We can see that g;; is well defined

(z4,2%,..) = (w = (Y122 ).

12



The factor |s|?* also gives a holomorphic vector field X = 0,1 near the divisor that
satisfies

(X,Y)y = O(s*), V[Y|y < 1.
Finally, on the divisor {Z! = 0} the metric becomes

. 1 1 st | T :
: 1+]z2 L1 — (1+]2]%)2 z'2) 0 WFS’(Cpn—l
0

Hence the restriction of the degenerate metric on the divisor will be another Kéhler
metric.

3.1.2 Possible explanation for ¢y

From above discussion we may guess that the degeneration of determinant will comes
from the first column. Hence we look at the term ¢;7 on chart Up, then from Lemma 3.2
we get

(152%),1 = K2|s|2=D) [ dudy 012t E 0z PR ]
H 1+ |22 (1+1[2]2)2 (1+122)?
Oii 7l
—k 2k %) _
o [t v
_ k2|s|2(k—1) [ 1 . 2|Zl|2 + |Zl|4 }
L+]z[2 (14232 (1+][2[?)3
1 1|2
—k’s]%[ S - 2] 22]
L+ [z2 (1+]z2?)
k| 52— 2 4
=—k—(2 1 1 .
1+ |22 [k — 2k +1)|s|* + (k + 1)|s[*]

And since

1 112

z 1 |2 1 9
1 1 — = 1—
g1+ 12 <1+\z|2> [T R~ PR~ Ta e

if we assume @, = an:l am|s|?™, then

1 ’2m 1)

911 + (ep)i1 = T ]zP (1—|s*) + Z m P ’2 (m? —m(2m + 1)|s|> + m(m + 1)|s|*]
= 1+llz|2(1 — [P+ ) amm?[sP =" amm(2m 4 )57+ amm(m + 1)]s2M D)
= 1+1|z|2 <1 + a1 + [~1 + 4az — 3a1]|s|?
+ Z [ams1(m 4 1)% — amm(2m + 1) 4 ap_1(m — 1)m]\s\2m>.
m>2
So for ;7 to have order |s|?* at the divisor, we need a1 = —1,as = —% and a,, = —%

for m < k, which is what we define ¢ to be.
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More precisely, if we let |w|> = }°,_,|2'[?, then the potential for the Fubini-Study
metric is

12
log(1 + |22 + |w|?) = log(1 + |w|*) + log(1 + 1|+||w|2)
P —[2'* o
—1 -
where we use log(1 —z) = =%, +; L™ And we have
‘ ’2 |Z1’2 ‘Zl|2 1
sIm = 112 2 = 2’ |21]2
1+ |2% + |w] 1+ |w| 1+m
12 12 12
z z —|z
_ ‘ | 2(1_ ‘ | 2+( | |2)2+_“)’
1+ |w 1+ |wl 1+ |w
SO
log (1 + [2I% + fol?) — |sf? = log(1 + wf?) + S(- 21 _y2 4
21 + |w|?
=log(1 + |wf?) + [2"]*(--+)
and
ko1
1 1 o 2m:1 1 2 12(7{:—}—1)__"
og(1+ [2'* + |w|?) m2;m|8| og(1 + [w|%) + [z ()

With |w|? being independent of 2!, gy will naturally have vanishing order |21 |%* for all
j

j. We can also see that the term log(1 + |w|?) is the one that contributes to the restrict
metric on the divisor.

Thus we conjecture that under suitable coordinates (z,w) € CxC"~! such that locally
the divisor is just {z = 0}, the local model for the potential of degenerate metric with
|2 is of the form

¢ =f+z[**Fg

vanishing order |z

where 0, f = 0z f = 0. However this local model is quite fragile, as it will not be preserved
under general coordinate change, even if we fix z. For example in CP?, under coordinate
change (w!,w?) = (21, 22 + 21), the potential for will become

log(1+ [2%%) + 21 (- ++) = log(1 + |w® — w!?) + [w! (- ).

So for further application, we either need to find suitable coordinates for the local
model or need to describe it in a more coordinate-free way in the future.

As a final remark, since the construction in 3.1 works for all k£ € N, it is interesting to
see what will happen if we let k approach infinity. As k — oo, we get

o

1
Poo=— ) E(|S|2)m = log(1 — |s|*),
m=1
which is well defined when [s|?> < 1, s0 w + i00ps, is well defined on CP™\{p} with
p=1[0:1:---]. Then this should give a vanishing order of co. In practice, we see that
on U[),

i

1422

w + 100pse = 100 10g(1 + |z|?) 4+ 100 log(1 — ) =00 log(1 + |2> — |2'?).

14



With 1+ [z]> — [2']* = 14 3,5, |2"|* not depending on z!, the metric g;; will vanish
if i or j is 1. And in the remaining direction, it becomes the Fubini-Study metric for
(22,...,2"). It looks like we collapse the whole CP™\{p} into the divisor.

For the behavior near p, we exchange 0 and 1 like before. Then on chart Uy, p is just
the origin, and we have

w + 100 = i0010g(Y | Z°%) = i0dlog(|2[).
>0
Also from 3.1, the volume for w + 190y, is |s|**ef*w", with
k 1— ’3‘2(k+1)

[s[*Fer = s (k +1)(3_ [sP™)" 7" = (k +1)]s*(

m=0

e
Thus if we let f, = |s|*!ef* € C°°(CP™), then we have [(fy — 1)w™ =0 for all k € N

and
ful2) — {0 ifz#0

oo ifz=0.

So the volume will concentrate at the point p as k — co.

3.2 Hyperplane with degeneracy |s|?*, k € R+

We now give a example with vanishing order |s|?* for all k € Rg, our main result for
this section is:

Proposition 3.4. For k € N and 0 < r < 1, if we take ¢ = @) + k%rr|3|2(k+’“), where
o =—SF _ Lis|?™ as in Section 3. Then w+iddyp defines a Kihler metric on M — D

m=0 m

that satisfies B
(w +i88p)" = |s|2FFT= Dl yn, (18)

with
k n—1
ef = (Z |S|2m _ |3|2(k+r)> [(k + 1)’8’2(1—7") +(k+r)—(k+7r+ 1)‘8‘2].
m=0

The discussion in Section 3.1.2 suggests that to get degree k-+r with k € Z>0,0 <r < 1,
we should consider @j1 + Co|s[?F*T7+D) then gi7 + @17 = [s|2FHD () + |s]2FH(.) =
|s|2(++7)(...) will have vanishing order |s|2(A+7),

For ease of notation and computation, we may take o = ¢y, +C’0\s|2(k+r) and Cp = =

k+r*
Then from Lemma 3.2, the metric will be
(k+1)|s|?* 2 (k+1)]s|2F 2t 9
z2 2
97+ 05 = | i || bl SNETENICLN R
e | st I — =i — | [ (2P )
z" 3
+ Colk +r)2 s+ [ R N e A e
I A N O R (L
dij Zizd

_ 2(k+r) _
Colk+r)s [1+|z|2 T+ 2P
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k+1)|s|2k (k+1)|s|?k 21 n
(1+|)z||2 (1 —1sl*) - (1+)|‘z\7|2)2 (=% - 2")

Z2 72
(k+1)|s|?k 21 . b ls[?™ Sk _omAD)s)Pm [ . n
meeE | G| TERE LFV_‘T%%ﬁ4* )
Zn 3
r 52(k+r71)
(IsPE ) o [k )21 [s?) + (b + 2 .. 2
+ CO k+7r)|s 2(k+r) 5|2 (k+71)
— Al Lt + B [k + 1) + (k4 1)
A Bzt (22 z”)
52 52
| B Cloi+E| | (22 -+ 27
271 zn
with
(k+1)|s|* 5y, st 2 2
A=-"100 (1 - 2 - - 1
15 |22 (1—1sl) + TRPE (L= [sI)(k+r)—(k+7r+1)]s|7]
1 sP

= TRl DI+ G DIsPE) — Dl 2 0,

(kA DI [sft
M+1=17)? (1 +]2)?
_(k'+ 1)|8’2k B ‘8|2(k+r71)
(14122 (1+]z)?

[(k +7) (=1 +[s[*) + |s[’]

[(k+7)— (k+7+1)|s]?

B A
(1= [P+ 2%
o [8*™ — |s[2+7) >
C ==n= >0 (.- 1),
5 (it DIsPE - 570 (m o+ D]
(1+12[2)?
So we can factor out |s|?**7=1) from the first column like before, and the determinant

of first ¢ x ¢ block is

J4
det = Ac“1+ Z\zl\ )= > BXCU PP

=2

J4
A+ BY ) - P PE S
=2 =2

l l
. A .
:CZ—QA C E 12 2 712
HEL T - a e Pl 2
ct=2 A
:1+|z|21—|s|2
l
- , (k+ 7+ D[s*FH) — 578 o(m+1)[s™ o
(0= 1) ZHQ [P 4 (1 JsP) e Eat LA IRk

=2
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E+1)|s|2k g|2(k+r—1) )
_<(1+&é +’l+kp[%+w) (k+r+1)s% b|§:pﬁ}

c=2 A
:1+up1—pp

(1= s E:MM—SPHU
(1= |s|2)(k + 7+ 1)]s]2E0 — Sk g2m 4 (k4 1)]s20D K
i 1422 Z|z |

(k + 1)’8’2(k+!) ‘S‘Z(k—l-r) i
— 1
( T+ 22 + T+ P (k4+7r)—(k+r+ ]s E ]z\

ct-2 A
:1+H“—BP
_1q|2 2(k+r) _ Ok om ¢
2 oterryy , L= [s[F)(k+r+1)s| > m=0 I8l |2
(0= 1) §]|m—ﬂ Jr e =l 5
|S|2(k+r) ) / -
—W[(k+r)—(k+r+1)|s| DR ]
=2
ct-2 A
T 142182
k 2(k+7) k 2m £
a2 o2m | o 2(k+r) El — Ym=o S| (2
(0 B I = s o 2 B 5
m=0 =2
c-loA 14 ‘
—_ 1— 1 12 _ 1 2 12
G CRUREER EJZ@ 1+uP1|W[+”' - 2T
In particular,
Cn—l ”—1 A
det(g;z + 1 2 2| =
etlog+ ) = 1T Ta T | L+ §jvr] AR

— C”_1(1+1\z|2)2[(k + DI+ sPETTI (k4 1) = (k4 7+ 1)[s])]

1

= [sPFHr=0 e [k D)) sPU ) 4 (k) = (k+ 1+ 1)]s)?,
(1+2%)

with (k + 1)|s|?0=") 4+ (k +7) — (k47 + 1)|s|> > 0 since |s|> < |s]?0~") < 1. Hence

this gives a metric outside the divisor with vanishing order |s|>*+7=1) on the divisor on

chart Uy, with behavior like cone metric associated to |s|2(-+7=1),

Similarly we have to check on chart Uy, and we exchange 0 and 1 as before. Then
k

_ 1 2m 1 2(k+r)
6= 2 L

__il ; 2m+ 1 1 2(k+r)
o m L+ k+r \ 1+ |22 '
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As before we have

i 5,0
2k 2k ij
- =k E+1)——=
(1) = klsf (12 + (b + D s
therefore we get
0ij Z') Zid
i + = 2 o 2m 'U . + 1 —==
RIS TP (EaE O Z" ERE A ARl
—0;j Zil
+ |5 204) flhtr+1)—
s [1+! 2 + (k+r )<1+‘z‘2)]
k
Z ’2m |2(k+r)) 5ij
1+ 22
b 7l
1 2m 1 2(k+r) ]
E:O m4+1)|s|®™ — (k+7r+1)]s| )(1 e
And using Lemma 3.3,
tt — [ Zcolsm — 1sPEONT (T m+1>r P — (k474 s e
1+ 22 Sk 0’5‘2m_ |s|2(k+7) 1+ |z[?
SholsPr —sPEO\" (| m+1>rs\2m—<k+r+1>|sP<k+r> 1= o)
_ — s
tE Il o lsf2m — |20+
(Sl sPEN (S, rst (k + DIs4+D — (b + 7+ DIsPED( — [sP)
T \ZP Do 82 = Js[20+7)
k: m T n—l 7' T
I A e € —[sP*H 4 (k4 )[R 4 (k 4+ 1)]sPF (1 |s]?)
1+ \,z|2 1+ |22

> 0.

B Z’ng@:o S|2m - |S|2(k+r) (k‘ + T)|S|2(k+r) + (k: + 1)|S|2(k+1) _ (k‘ +r 4 1)‘5‘2(kz+r+1)
N 1+ |z]? 1+ |z[?

The determinant of first £ x £ block can also be easily seen to be positive as the last
factor should be bigger.

In this example we can see that p = — Zk s|?m

|2(k+r)
m=1m

1 . .
+ 5 |s gives determinant

’S‘Q(k—i-r—l)
(14 1z2)?

k om [ o20k4r)\ "
<Zm:o iL]z\Q‘S‘ ) [(k+1)|s*™) + (k +7) — (k+7 +1)|s]?],

hence we may expect that the solution ¢ for |s|?*, k € R will look like ¢ = f + |s|?*

where f, g are smooth function. (In other words, the solution ¢ is not too bad.)

9,

3.3 Other smooth divisors

Some examples with different smooth divisors are also calculated using the computer.
We simply present the result and will not do the full calculation:

18



In CP?, we pick L = O(2), s = (292 + (Z)? + (Z?)? and D = {s = 0} is smooth.
1y2 2322
Then on chart Uy, |s|? = % Now consider ¢ = —2%[s|?, then on Uy (hence
on any U; by symmetry):

(Is* +2)

o= 3
det(w + Zaago) = Z’SPW

And if we add —3|s|*, — 2 |s|® after ¢, we will get a vanishing order of |s|* and |s|°.

However, if we pick L = O(2), s = (2°)2+(Z2')?+(2%)?+2°2' +2°Z22 + Z' Z2. Then
it seems that there is no constant C' € R such that w + C - i99|s|? will have a vanishing
order of |s|2.

4 Examples for Normal crossing divisors

In this section, we consider the simple normal crossing divisor consisting of hyperplanes
in CP™.

4.1 Normal crossing degeneracy from pullback

A first suggestive example for normal crossing divisor comes from the pullback of the
metric on CP™. For all m > 2, if we consider the map

cpr 4, cpr
[ZO AR AL [(Zo)m : (Zl)m s (ZM)m,

then since the tangent map is not surjective on the normal crossing divisor {Z° =
0} U---U{Z" = 0}, the pullback of Fubini-Study metric via j will be singular on it.

More precisely, the pullback of a Kihler metric satisfies j*w = j*id0¢ = i09(¢p o j),
where ¢ is a local potential of w. Hence on chart Uy = {Z° # 0} with coordinates
(z%,...,2"),

I g A4 i12my _ m|d Hm D20
9;; = (5" grs)i; = 0:id;log(1 + EZ: [#17) = 0 (HZ’»’«“Z\Q’”

B 5ijm2’zi‘2(mfl) m2]zi\2(m_1)]zjlz(m_l)éizj

ESE C+X P

and the determinant is
5iom2| 51 [2(m=1) 1 , 2n T [»i|2(m—1)
det ¢/~ = det UL W 1] . 1l—-—— Z\zl\zm - H’|Z.| ,
§ L+ [P S EL CESMEEDL

which will have same vanishing order |2*|2(™=1) on each divisor {Z* = 0}. And this
corresponds to the case where L = O(1)2("=D("+1) with induced hermitian metric from
O(1) and s = [[o(si)™ ! € ['(L) where s; € I'(O(1)) is the section that has vanishing
order 1 on divisor {Z¢ = 0}

Now, since w = i90logY_|Zi|> and j*w = i0dlog > |Z¢|*™, for the difference of
potential to be globally defined, we need it to be homogeneous. In other words, consider

|2
(X |Zif2m)m

)

1 _ A 1 A _
— —*w =1i00(1 Z? - =1 ZHP™) =991
w——j'w=i0d(log Y |Z'* — —logy |Z'[*") =i0log

then the difference will be ¢ = — log M € C™®(M).
(X |zpm)m
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Remark 4.1 (Local behavior of degenerate metric). The pullback metric on Uy looks
like

m2lzl‘2(m71)(1+z |Zi|2m—|zl‘2m) _m2lzl|2(m71)|22|2(m—1)21z2 o _m2|21|2(m—1)|zn‘2(m71)212n
(I3 [2*[™)2 (1> [0 *m)2 (2[4 m)?
7m2|zl|2(m_1)|22|2(m_1)2122 mQ‘ZZ‘Q(m—l)(lJrZ |Zz|2m7‘z2‘2m)
- (1422 1z7m)2 (1+201z2m)2
95 = )
_m2|zl|2(m—l)‘Zn|2(m—l)zlz'n mZIZ"IQ(m‘”(HZ \zi|2m—|z"|2m)
(12012 2m)2 [(EMEUEDE

Like before, we can factor out |2*[2™~1) from each column, which contributes to the
final degeneration of the determinant.
And from the above example, we may guess that the behavior of metric with degener-

ation [0, |2%*" will be:

‘Z1’27’1 ’Z1‘2T1 . ’Z2|27‘2 ‘21’27’1 . |Z3’27‘3
|Zl|2r1 . |22|2r2 |Z2|2r2 |Z2|2r2 . |Z3’2r3
‘Z1’2T1 . ‘23’27@, ’22‘27"2 . ’23‘%3 ‘23’273 (19)

under suitable local coordinates such that {[[(z")" = 0} defines the divisor.

4.2 Local construction with normal crossing degeneracy

Following the above example, we continue to consider the metric of Fubini-Study type.
For more general normal crossing divisor that has different order on each part, we may
take locally in coordinates (z!,...,2")

w=1i0dlog(1+ Y |2 tl),

=1

with r; # —1 € R being the vanishing order we want on {2z = 0}.

Then
2 (r; +1)|2%?riz
gi; = log(l 4 ’21’2(m+1))'_. _ ( L
(X ZZ; 1J 1 +Z?:1 ’Z’L‘Q(TZ-"-].) 7
_ P (i Dy D P
14 > | z#]2(ri+1) ij 1+, | 21| 2(ri+1))2
and

[T (ri + 1)2]2 2
(1+ 305, [Pt D)
[y (ri + 1)%|2
1+ 30, [0t Dynt1

Z?:l ‘zz"Q(nJrl)
1 + E?:1 ’Zi‘Q(ri-i-l)

(1 )

det g;; =

which has vanishing order [ |2*|?"# as we hope.
For positive definiteness, we can see that the determinant of first £ x ¢ square is

0 i 12r; L i 12(r; 14 i12r;+1
[[iz (i + 1)2|ZZ|2T K(l dic1 ’ZZ‘Q(T ) )) — (H(Tz + 1)2|Zz"2n> L+ Z?:Hl 2" 0.

, - . : >
(L4 300 [ARD)E 14 370 2]t paley (14 320 [Pt )t
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So the metric is positive definite outside the divisor.
If welet G =1+ 31, |2°[2"*+D) ] then

95 = (log G) ;5 = 7
(DR (A (DRI
IREDY I (1420 [2PrD)?
Con (Tt 12 (143 ‘Zj‘Q(Tj+1)) ' .
— |Z7'|2rl (1+Zf:1 |]Z7:|2(7‘,L'+1))2 - 17 = j
_’zi‘2r¢|zj|2rj (ri+1)(rj+1)z'27 y

(3, [ P2

1‘27‘1 (r1+1)2(G—|z12(r1+D) —’Z
G2

212 112rq (ra+1)(r14+1)2221

|2r2| 21| 1 ( )(G2 ) |22

|2r1 ’Z ‘27"2 T1+1)(T2+1)

22 (ra+1)?(G— |z2\2<T2+1>>
G2

|z

= | -z

as guessed in Equation (19).
From this we also see that the degenerate metric is still a metric when restricted to
the smooth part of the divisor.

Remark 4.2. We also have a simpler local construction by considering
n
(Z ‘Zz‘Q(riJrl))ij _ 5@']‘(7"1‘ + 1)2‘21|”.
i=1

This gives a similar degeneration, and can be globalized to normal crossing divisor in

(CPYY",

4.3 Globalization

With a little tweaking, we can make the above example defined globally. Our main result
for this section is:

Proposition 4.3. Forr; € Ryg, 1 <17 < n, consider

n n
w = 283 10g(|ZO‘2m + Z |Z’L‘|2(Ti+1)’ZO‘2(m*T¢*1) + Z |Zl|27n)7
=1 i=1

where m € N is greater than or equal to r;+1 for all 1 < i <n. Then w is well defined on
whole CP™ and determines a metric outside of the divisor {Z° =0} U (U,i-o{Z" = 0}),
with vanishing order |2*|?" on {Z' = 0} for eachi > 1. However, although we can create
any vanishing order r; on each {Z' = 0} fori # 0. The vanishing behavior on {Z° = 0},
is determined by other {r;}"_, in this construction.

And the difference of

SLolZ P _ i050
1
(1Z0Fm 4+ iy | 2P| 20Pn =) 4 S |26

1 _
wps — —w = 100 log
m

gives a globally defined potential .

For

w = i00log(|Z°)*™ + Z | Z7[2(rit1) | g0 2(m—ri=1) | Z 702,
=1 i=1
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on chart Uy,

n n
g5 =log(1+ Y [P+l 43 "1™ 5
=1 i=1

(ri + 1)|2"|*riz' + m|2" 2D 7

14+ Z:}:l |Zi|2(n'+1) + Zzﬂzl |Zi|2m>5
(ri + D2Pre 4 m2|Z 2D (i DP  ml PO )« opart)

LS AP 3 |2 (L4320 |20t ) 4 570 |28 [2m)2

Then using lemma 3.3

det g;; =

[Ty (ri + 1)2)2527 + m?2 |27 2m=1)
(1 + Z?:l ‘Zi|2(ri+1) + Z?:l ‘Zi‘Qm)n
i ((ry + 1)[24% + m’Zi’2(m1))2>

|z
1— : . | '
; L300y [Pt D) 4 50 282 (7 4 1)2]27 2 4 2|27 [20m=1)

[T5, (ri + D272 4 m2|2om=)

a (1+ ZTF |28 [2(ri+1) 4 27} ‘Zi‘Qm)n—i—l

. j|2r; i12(m—1)\2
112(r+1) 12m __ z2<(r1+1)‘zl‘ +m‘z ‘ )
1+Z’Z | +Z|Z | Z| | (ri—i—l)Q\ZiP”+m2’2i’2(m_1)

Hizl(""z‘ 1) !Zl\2r1+m2lzzlz(m 1)

- (1430|2020t ) 4570 |2i[2m)n+l

n

L+ [P0 2 2
=1

T (ri + 1)2[2°> + m?|2"2m=1)

(TZ,+1)2(’21’21%)2+m2(‘zi‘2(mfl))2+2(ri+1)m|zi’2(m+ri+1)
(ri + 1)2[2[2r + m2|zi[2(m~1)

T (L4 S R S (i emynt

14+ i ’Zz‘|2 mQ‘Zi‘Q(m+r¢+1) —+ (7“1‘ + 1)2‘zi‘2(m+mfl) _ 2(7%' + 1)m‘zi‘2(m+n’+l)
i1 (ri + 1)2| 28|27 + m?2|zi[2(m—1)
TG+ DA oD z\ spdmen
1+, | 28] 2(ri+1) £ [z 2mynt (ri +1) ‘Zi‘%i + m2|z1[2(m=D)

_H‘ Z|27“Z Z 1(Tz+1) +m2‘z1|2(m ri—1) 1+Z| Z|2 (m—r; —1) |Zz|2 m+ri+1)
(14 D05y 2820t 4 370 [28[2m)nl P (ri + 1)2[212 + m2|zi[2tm=1)
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For the positive definiteness, the determinant of the first £ x £ block is

Hf:1(7"z‘ +1)2]24%" + m2’zi’2(m71)
(14 Sy [ S e

l ) . |
1_2 i ((rs + 1)]2*[> 4+ m]|2t[2m—1))2
S 1+ 0 [FPUED 4 3T [P (i 4 1) P 4 m2 220
Hf:1(7‘i + 1)2|2%2" + m2|27|20m=1)

T (Lt PR S i my

n n l .o .
|2 / 2 (i + D] 4 m|22m 1)
L+ Y PO £ 3 P =Y P ‘
i=1 i=1 i=1

(Ti + 1)2‘2’7’|2ri —i—mQ]ziP(m_l)

_ Hf:1(7“i + 1)2|2%27 + m2|z1|20m—1)
- <1+Zn 220 D) £ S [z 2y

o (m—ri —1)%5H A0t L 2(ri+1) /12

i 112(ry i12m

1‘1‘2‘ | +1 |Zz‘2rl +m2|zz|2(m 1) + Z |Z | + ‘Z | )
i=0+1

which is positive outside the divisor.

Remark 4.4. Although we can assign any degree on the divisor {Z° = 0} for 1 <
i < n. This will certainly create some order on the divisor {Z° = 0} (which should be
| 20|mins 20m=7i=2)) “We hope to fully calculate this in the future.

5 A Proposal on the openness of degenerate complex
Monge—Ampeére equations

With the above examples as a starting point, we can start to set up the continuity
method. For reference, we first review how it is done in [1].
To solve the complex Monge-Ampeére equation

(w +i00p)™ = ef'w™ (20)
we deform it through the following equation
(w +i00p)" = CreFw™, t € ]0,1].

where C; = vol(M)/ [ ef'w™ is constant for each ¢ which makes Equation (2) hold.
Then we con81der the set

S = {t € [0,1]] the equation (w + iddp)" = Cye't'w™ has solution p € C*H(M)}.

We have 0 € S, since at t = 0 the equation is just

(w+i00p)" = W"

)

hence ¢ = 0 is a solution. If we can show that S is both open and closed, then since

[0, 1] is connected, we must have S = [0, 1]. In particular, 1 € S, so Equation (20) must
have a solution in C*+he(M).

For the openness, we use the inverse function theorem for Banach space. Let

O = {p € C* (M) (g5 + ¢i3) > 0, / o =0},
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B={feCtLe) /fw” = vol(M)}.

Then O is an open set in Banach space C*+1%(M) (since eigenvalues will have lower
bound), and B is an affine plane in C*~1%(M). We have a map G : © — B

B det(gﬁ + 8%(,0)

G
With differential at ¢ is

d det(g;; + a%cp) B det(g;; + 8%@
det g5 B det g;;

dG (o) = 6G(p) = Ag, (0).

Hence, since the tangent space of B is {f € C*~12(M)| [ fw™ = 0}. And for

det(g;; + 6%90)

dG(0p) = det g;5
ij

Ag@ (0p) = f

to have weak solution, we have A, (d¢) det(g;;+¢;;) = fdet g;5,50 [ fw™ = [ Ay, (6p)(w+
100p)™ = 0, which is precisely the requirement for tangent space of 5. Thus we have a
weak solution ¢, and by usual Schauder’s estimates, ¢ € C¥T12(M). ¢ is also unique
if we require f @ = 0, thus the differential is invertible and we can apply the inverse
function theorem for Banach space. This shows that if we have a solution to Equa-
tion (20), then for a small change on the right-hand side, the equation is still solvable.
In particular, this proves the openness for S.

We won’t talk about closeness here, instead we will try to work on the openness for
degenerate metric. In the degenerate case, for any |s|?*, it is not clear why there should
be a smooth solution to any Equation (4). This is why we have to construct some
examples and hope to work on the general existence in the future. With these examples
as a starting point, we can try to prove the openness near these metric. This part has
been treated in [2], in the case of |s|? with simple zeros on the smooth divisor. We hope
to deal with general smooth divisors with any order |s|?* based on our constructions.

As in the nondegenerate case, we consider the same G : C*TL*(M) — B. We now
look at the map near the w’ = w+i00¢p we constructed in Section 3, which is degenerate
on the divisor. Then the differential dG at ¢ will be

B 5det(g +¢) Al det ¢’

= 095 = G

dG(9¢) detg  detg

Ay (p), (21)

where A% is the (i, j)-cofactor of (g;; + ¢;;)- And because the metric is degenerate on
the divisor, Ay is only well defined outside the divisor.

So for the invertiblilty of dG at ¢, we have to solve the degenerate Laplace equation
associated to conical metric

det g’ Ay (6p) = fdetg.

for any f € C~12(M) that satisfies [ fw™ = 0. As treated in [2], We hope to use
the result of [6] about Hodge theory in Riemannian manifold with non isolated conical
singularity, but this requires some further investigation.

Suppose that we can solve the degenerate Laplace equation; then we have to show that
the solution belongs to C**1(M). For this, we need to develop Schauder’s estimates
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associated with the conical metric. Since the metric is nondegenerate outside the divisor,
we only have to check the regularity on the divisor.

Now we investigate the case where ¢ is the one we constructed, then we can find
coordinates near the divisor such the metric is of the form as in 77, i.e.

‘Z1PT1 |21PT1'|22PT2 |21Pr1'|23pr3
‘21|2T1 . ‘Z2|2T2 |22‘2T2 ‘Z2|2T2 . |Z3’27’3
gij = \Zl|2r1 . |Z3|2r3 |22|2r2 . |Z3|2r3 |Z3|2r3

For simplicity we only consider the smooth divisor first, that is

|5Fk |$Fk
2k
91{3 — | Is *
Then we can observe that Azj will have a factor of |s|>* unless i = j = 1. So for

Ay (8p) = g9 (8p) 55 = Mﬁ(&p)g, we can see that only the term ¢'*! will have a
W in it, the remaining ¢’? will be smooth.

Another possible way to get the regularity is based on the observation that ggj is the
pullback of g;; under the map

(z4,22,..) = (w = (z)FFL 22,0,

Where
1 2 D 2
2 (1—1s/%) - — (z zn)
(k+1) (1+|w] FHT ]2 |2)k+1 (1 [w] FHT 4|27|2)k+2
z2 z2
i w : Englsf” g SheolmtlsE” | (2
2 oto : = n—1 2 e :
(I+|w|FFT 4]/ [2)F+ n L+|w| k+L ]2/ (I+|w| R+ +2"|2) n

2
|w|k+1

with [2/]?2 = 3.0, [2"* and |s]? = . It is well defined and nondegenerate in a

Lt fw| BFT ]2/ |2
neighborhood of {w = 0}, so it is likely that we may use the usual Schauder’s estimates.
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